Chemical characterization of fine PM and source apportionment of organic aerosol from ambient and laboratory measurements

Atmospheric aerosols, also known as atmospheric particles, are suspended particles (solid or liquid) in the air with diameters ranging from 1 nm to about 100 μm. Atmospheric aerosols affect the Earth's radiant budget and hence the global climate through its so-called direct and indirect radioac...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Φλώρου, Καλλιόπη
Άλλοι συγγραφείς: Πανδής, Σπυρίδων
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2019
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/12871
Περιγραφή
Περίληψη:Atmospheric aerosols, also known as atmospheric particles, are suspended particles (solid or liquid) in the air with diameters ranging from 1 nm to about 100 μm. Atmospheric aerosols affect the Earth's radiant budget and hence the global climate through its so-called direct and indirect radioactive effects, and also have a negative impact on human health. They can be classified as primary (emitted directly into the particle phase) or secondary (formed in the atmosphere through a series of chemical reactions). Typically, atmospheric particles consist of a mixture of inorganic and organic chemicals, including nitrates, sulfates, ammonia, organic compounds, elemental carbon, sea salt, crystalline compounds and water. The organic aerosol represents a significant fraction of the mass of atmospheric particles, but its sources and chemical composition have not yet been elucidated. Real-time high resolution aerosol mass spectroscopy was the central measurement technique used in this work. The Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) can continuously measure the chemical composition and size distribution of non-refractory submicron aerosol (NR-PM1). The high-resolution mass spectra provided by the instrument every few minutes contain information about both the organic aerosol sources and processes. This thesis presents the first HR-ToF-AMS measurements in two major Greek cities (Athens and Patras) and a remote site (Finokalia, Crete) and quantifies the contributions of the various sources to the corresponding organic aerosol levels. In addition, the formation of secondary organic aerosol during the photo-oxidation of m- and p-xylene, two important atmospheric aromatic hydrocarbons, is investigated in the laboratory using an atmospheric simulation chamber.