Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meter...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2020
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/12955 |
id |
nemertes-10889-12955 |
---|---|
record_format |
dspace |
spelling |
nemertes-10889-129552022-09-05T06:58:32Z Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time Ανάπτυξη εφαρμογής μηχανικής μάθησης σε πλατφόρμα IoT για πρόβλεψη κατανάλωσης ενέργειας έξυπνου κτιριακού περιβάλλοντος σε πραγματικό χρόνο Χουσιάδας, Χρήστος Κουμπιάς, Σταύρος Κουμπιάς, Σταύρος Καλύβας, Γρηγόριος Chousiadas, Christos Machine learning LSTM Smart building Energy consumption Μηχανική μάθηση Κατανάλωση ενέργειας The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meters that was connected around the household’s appliances. Also, our platform is capable of extracting usage patterns of appliances based on the activity (ON/OFF states). These methods provide services for people, who want to control financial expenses (i.e. electricity billing), acquire higher energy awareness, etc. This topic has recently been receiving a lot of attention due to the availability of data providing from the Wireless Sensors and the increasing to integrate artificial intelligent computational systems with IoT platforms. It is a great technological interest for electrical engineers, researchers and electric utility companies. Ο στόχος της παρούσας διπλωματικής εργασίας είναι ο σχεδιασμός και η υλοποίηση μιας προηγμένης εφαρμογής μηχανικής μάθησης για ΙοΤ πλατφόρμα, βασισμένη σε ασύρματα δίκτυα αισθητήρων. Αρχικά, η εν λόγω εφαρμογή προσπαθεί να προβλέψει την βραχυπρόθεσμη κατανάλωση ενέργειας (Short-Term Load Forecast) ενός κτιρίου με την βοήθεια της μαζικής παραγωγής των δεδομένων. Στην συνέχεια, γίνεται η προσπάθεια εξαγωγής μοτίβων/πρότυπων των ηλεκτρίκων συσκευών με βάση την κατάσταση λειτουργίας τους (δηλ. πότε λειτουργεί η συσκευή μέσα στο εικοσιτετράωρο). 2020-01-14T16:54:36Z 2020-01-14T16:54:36Z 2019-09-26 Thesis http://hdl.handle.net/10889/12955 en_US 0 application/pdf |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Machine learning LSTM Smart building Energy consumption Μηχανική μάθηση Κατανάλωση ενέργειας |
spellingShingle |
Machine learning LSTM Smart building Energy consumption Μηχανική μάθηση Κατανάλωση ενέργειας Χουσιάδας, Χρήστος Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
description |
The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meters that was connected around the household’s appliances. Also, our platform is capable of extracting usage patterns of appliances based on the activity (ON/OFF states). These methods provide services for people, who want to control financial expenses (i.e. electricity billing), acquire higher energy awareness, etc. This topic has recently been receiving a lot of attention due to the availability of data providing from the Wireless Sensors and the increasing to integrate artificial intelligent computational systems with IoT platforms. It is a great technological interest for electrical engineers, researchers and electric utility companies. |
author2 |
Κουμπιάς, Σταύρος |
author_facet |
Κουμπιάς, Σταύρος Χουσιάδας, Χρήστος |
format |
Thesis |
author |
Χουσιάδας, Χρήστος |
author_sort |
Χουσιάδας, Χρήστος |
title |
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
title_short |
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
title_full |
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
title_fullStr |
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
title_full_unstemmed |
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time |
title_sort |
development of a machine learning application for iot platform to predict energy consumption in smart building environment in real time |
publishDate |
2020 |
url |
http://hdl.handle.net/10889/12955 |
work_keys_str_mv |
AT chousiadaschrēstos developmentofamachinelearningapplicationforiotplatformtopredictenergyconsumptioninsmartbuildingenvironmentinrealtime AT chousiadaschrēstos anaptyxēepharmogēsmēchanikēsmathēsēsseplatphormaiotgiaproblepsēkatanalōsēsenergeiasexypnouktiriakouperiballontossepragmatikochrono |
_version_ |
1771297170166644736 |