Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time

The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meter...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Χουσιάδας, Χρήστος
Άλλοι συγγραφείς: Κουμπιάς, Σταύρος
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2020
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/12955
id nemertes-10889-12955
record_format dspace
spelling nemertes-10889-129552022-09-05T06:58:32Z Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time Ανάπτυξη εφαρμογής μηχανικής μάθησης σε πλατφόρμα IoT για πρόβλεψη κατανάλωσης ενέργειας έξυπνου κτιριακού περιβάλλοντος σε πραγματικό χρόνο Χουσιάδας, Χρήστος Κουμπιάς, Σταύρος Κουμπιάς, Σταύρος Καλύβας, Γρηγόριος Chousiadas, Christos Machine learning LSTM Smart building Energy consumption Μηχανική μάθηση Κατανάλωση ενέργειας The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meters that was connected around the household’s appliances. Also, our platform is capable of extracting usage patterns of appliances based on the activity (ON/OFF states). These methods provide services for people, who want to control financial expenses (i.e. electricity billing), acquire higher energy awareness, etc. This topic has recently been receiving a lot of attention due to the availability of data providing from the Wireless Sensors and the increasing to integrate artificial intelligent computational systems with IoT platforms. It is a great technological interest for electrical engineers, researchers and electric utility companies. Ο στόχος της παρούσας διπλωματικής εργασίας είναι ο σχεδιασμός και η υλοποίηση μιας προηγμένης εφαρμογής μηχανικής μάθησης για ΙοΤ πλατφόρμα, βασισμένη σε ασύρματα δίκτυα αισθητήρων. Αρχικά, η εν λόγω εφαρμογή προσπαθεί να προβλέψει την βραχυπρόθεσμη κατανάλωση ενέργειας (Short-Term Load Forecast) ενός κτιρίου με την βοήθεια της μαζικής παραγωγής των δεδομένων. Στην συνέχεια, γίνεται η προσπάθεια εξαγωγής μοτίβων/πρότυπων των ηλεκτρίκων συσκευών με βάση την κατάσταση λειτουργίας τους (δηλ. πότε λειτουργεί η συσκευή μέσα στο εικοσιτετράωρο). 2020-01-14T16:54:36Z 2020-01-14T16:54:36Z 2019-09-26 Thesis http://hdl.handle.net/10889/12955 en_US 0 application/pdf
institution UPatras
collection Nemertes
language English
topic Machine learning
LSTM
Smart building
Energy consumption
Μηχανική μάθηση
Κατανάλωση ενέργειας
spellingShingle Machine learning
LSTM
Smart building
Energy consumption
Μηχανική μάθηση
Κατανάλωση ενέργειας
Χουσιάδας, Χρήστος
Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
description The aim of this study is the development and implementation of an advanced application and a Web Services for an IoT platform. The aforementioned application is able to predict the short-term energy consumption of a household based on the huge amount of data, which are collected from the smart meters that was connected around the household’s appliances. Also, our platform is capable of extracting usage patterns of appliances based on the activity (ON/OFF states). These methods provide services for people, who want to control financial expenses (i.e. electricity billing), acquire higher energy awareness, etc. This topic has recently been receiving a lot of attention due to the availability of data providing from the Wireless Sensors and the increasing to integrate artificial intelligent computational systems with IoT platforms. It is a great technological interest for electrical engineers, researchers and electric utility companies.
author2 Κουμπιάς, Σταύρος
author_facet Κουμπιάς, Σταύρος
Χουσιάδας, Χρήστος
format Thesis
author Χουσιάδας, Χρήστος
author_sort Χουσιάδας, Χρήστος
title Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
title_short Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
title_full Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
title_fullStr Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
title_full_unstemmed Development of a machine learning application for IoT platform to predict energy consumption in smart building environment in real time
title_sort development of a machine learning application for iot platform to predict energy consumption in smart building environment in real time
publishDate 2020
url http://hdl.handle.net/10889/12955
work_keys_str_mv AT chousiadaschrēstos developmentofamachinelearningapplicationforiotplatformtopredictenergyconsumptioninsmartbuildingenvironmentinrealtime
AT chousiadaschrēstos anaptyxēepharmogēsmēchanikēsmathēsēsseplatphormaiotgiaproblepsēkatanalōsēsenergeiasexypnouktiriakouperiballontossepragmatikochrono
_version_ 1771297170166644736