Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records

Modern technology is heavily dependent upon structural and mechanical systems. Early damage detection and classification of the structure’s stability can prolong structures’ health and useful lifetime. Damage diagnosis is an important process related to increased safety, reduced costs and predictive...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Κομνηνός, Παναγιώτης
Άλλοι συγγραφείς: Komninos, Panagiotis
Γλώσσα:English
Έκδοση: 2020
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/13750
id nemertes-10889-13750
record_format dspace
institution UPatras
collection Nemertes
language English
topic Machine learning
Structural health monitoring
Damage detection
Supervised learning
Reinforcement learning
Neural networks
Μηχανική μάθηση
Ανίχνευση βλάβης
Επιτηρούμενη μάθηση
Ενισχυτική μάθηση
Νευρωνικά δίκτυα
spellingShingle Machine learning
Structural health monitoring
Damage detection
Supervised learning
Reinforcement learning
Neural networks
Μηχανική μάθηση
Ανίχνευση βλάβης
Επιτηρούμενη μάθηση
Ενισχυτική μάθηση
Νευρωνικά δίκτυα
Κομνηνός, Παναγιώτης
Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
description Modern technology is heavily dependent upon structural and mechanical systems. Early damage detection and classification of the structure’s stability can prolong structures’ health and useful lifetime. Damage diagnosis is an important process related to increased safety, reduced costs and predictive maintenance in vibrating structures. Gathering vibration signals is usually an easy task since there is no need for specialized sensors and expensive equipment or disrupting the structure's continuous operation. Therefore, vibration-based Structural Health Monitoring (SHM) has gained considerable popularity over the past years as it combines effectiveness, ease of use, and cost-effective implementation. A critical barrier of SHM is the dynamic changes due to factors other than incipient damage, including varying Environmental and Operating Conditions (EOCs), such as temperature, humidity, payload, and other uncertainty sources. In addition, SHM needs an extensive signal pre-processing for a proper feature extraction, which is time-consuming. Despite SHM’s efficiency in damage detection, the feature extraction becomes significantly more complicated in damage classification tasks. Moreover, in many cases, it is difficult to acquire faulty conditions from a structure, as it must be damaged on purpose or previous real damaged cases should be used. Therefore, it is common to have much less damaged than healthy experiments (imbalanced datasets) for SHM. In this thesis, we are dealing at first with the issue of uncertainty and damage detection and classification by approaching SHM using Supervised Learning techniques during the oscillatory operation of a UAV tail boom. Secondly, we are dealing with the problem of imbalanced datasets using Reinforcement Learning. Data were gathered from an aircraft’s simulated tail boom by a lab-scale structure representing a composite beam - which was being re-positioned between two consecutive experiments for incorporating the response signals with uncertainty - and response signals were recorded for different structural states (one healthy and six damage scenarios). On the first hand, a Supervised Learning model identified the healthy or damaged state and then classified the possible damaged condition into a specific category. The received signals were used as time-series input to a 1-Dimensional Convolutional Neural Network (CNN1D). Using an equal number of healthy/damaged experiments, signal preprocessing and hyperparameters’ tuning the model achieved 100% True Positive Rate in binary classification problem (healthy/damaged) with a false alarm level equal to 0.5% or more, and more than 97% as the worse scenario in categorical classification (six different damaged scenarios) , which is a very difficult task for SHM, with a false alarm equal to 3% or more. On the other hand, a Reinforcement Learning model used for the identification of a binary condition with an imbalanced dataset. Although Supervised Learning struggled to identify correctly the structure’s condition with imbalanced experiments, using a combination of Deep Q-Networks and CNN1D, we proved that our Reinforcement Learning approach could classify correctly more than 99% of the experiments.
author2 Komninos, Panagiotis
author_facet Komninos, Panagiotis
Κομνηνός, Παναγιώτης
author Κομνηνός, Παναγιώτης
author_sort Κομνηνός, Παναγιώτης
title Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
title_short Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
title_full Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
title_fullStr Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
title_full_unstemmed Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
title_sort vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records
publishDate 2020
url http://hdl.handle.net/10889/13750
work_keys_str_mv AT komnēnospanagiōtēs vibrationresponsebaseddamagedetectionandclassificationunderassemblyuncertaintysupervisedlearningforbalancedandreinforcementlearningforimbalancedsignalrecords
AT komnēnospanagiōtēs anichneusēkaikatēgoriopoiēsēblabōnsekataskeuesypoabebaiotētasynarmologēsēsmesōsēmatōntalantōtikēsapokrisēsepitēroumenēmēchanikēmathēsēgiaidioplēthoskaienischytikēmēchanikēmathēsēgiadiaphoretikoplēthossēmatōnanakatēgoria
_version_ 1801184884562067456
spelling nemertes-10889-137502022-09-05T20:24:01Z Vibration response based damage detection and classification under assembly uncertainty: supervised learning for balanced and reinforcement learning for imbalanced signal records Ανίχνευση και κατηγοριοποίηση βλαβών σε κατασκευές υπό αβεβαιότητα συναρμολόγησης μέσω σημάτων ταλαντωτικής απόκρισης: επιτηρουμένη μηχανική μάθηση για ίδιο πλήθος και ενισχυτική μηχανική μάθηση για διαφορετικό πλήθος σημάτων ανά κατηγορία Κομνηνός, Παναγιώτης Komninos, Panagiotis Machine learning Structural health monitoring Damage detection Supervised learning Reinforcement learning Neural networks Μηχανική μάθηση Ανίχνευση βλάβης Επιτηρούμενη μάθηση Ενισχυτική μάθηση Νευρωνικά δίκτυα Modern technology is heavily dependent upon structural and mechanical systems. Early damage detection and classification of the structure’s stability can prolong structures’ health and useful lifetime. Damage diagnosis is an important process related to increased safety, reduced costs and predictive maintenance in vibrating structures. Gathering vibration signals is usually an easy task since there is no need for specialized sensors and expensive equipment or disrupting the structure's continuous operation. Therefore, vibration-based Structural Health Monitoring (SHM) has gained considerable popularity over the past years as it combines effectiveness, ease of use, and cost-effective implementation. A critical barrier of SHM is the dynamic changes due to factors other than incipient damage, including varying Environmental and Operating Conditions (EOCs), such as temperature, humidity, payload, and other uncertainty sources. In addition, SHM needs an extensive signal pre-processing for a proper feature extraction, which is time-consuming. Despite SHM’s efficiency in damage detection, the feature extraction becomes significantly more complicated in damage classification tasks. Moreover, in many cases, it is difficult to acquire faulty conditions from a structure, as it must be damaged on purpose or previous real damaged cases should be used. Therefore, it is common to have much less damaged than healthy experiments (imbalanced datasets) for SHM. In this thesis, we are dealing at first with the issue of uncertainty and damage detection and classification by approaching SHM using Supervised Learning techniques during the oscillatory operation of a UAV tail boom. Secondly, we are dealing with the problem of imbalanced datasets using Reinforcement Learning. Data were gathered from an aircraft’s simulated tail boom by a lab-scale structure representing a composite beam - which was being re-positioned between two consecutive experiments for incorporating the response signals with uncertainty - and response signals were recorded for different structural states (one healthy and six damage scenarios). On the first hand, a Supervised Learning model identified the healthy or damaged state and then classified the possible damaged condition into a specific category. The received signals were used as time-series input to a 1-Dimensional Convolutional Neural Network (CNN1D). Using an equal number of healthy/damaged experiments, signal preprocessing and hyperparameters’ tuning the model achieved 100% True Positive Rate in binary classification problem (healthy/damaged) with a false alarm level equal to 0.5% or more, and more than 97% as the worse scenario in categorical classification (six different damaged scenarios) , which is a very difficult task for SHM, with a false alarm equal to 3% or more. On the other hand, a Reinforcement Learning model used for the identification of a binary condition with an imbalanced dataset. Although Supervised Learning struggled to identify correctly the structure’s condition with imbalanced experiments, using a combination of Deep Q-Networks and CNN1D, we proved that our Reinforcement Learning approach could classify correctly more than 99% of the experiments. Η ανίχνευση βλαβών σε κατασκευές (SHM) μέσω σημάτων ταλαντωτικής απόκρισης έχει αποκτήσει σημαντική αύξηση τα τελευταία χρόνια, καθώς συνδυάζει την αποτελεσματικότητα, την ευκολία χρήσης και την οικονομικά αποδοτική υλοποίηση. Ένα κρίσιμο εμπόδιο του SHM είναι οι δυναμικές αλλαγές που οφείλονται σε επιπλέον παράγοντες, διαφορετικούς από την αρχική βλάβη, συμπεριλαμβανομένων των διαφορετικών περιβαλλοντικών και λειτουργικών συνθηκών, όπως η θερμοκρασία, η υγρασία, το βάρος και άλλες πηγές αβεβαιότητας. Επιπλέον, στο SHM χρειάζεται εκτεταμένη προεπεξεργασία σήματος για σωστή εξαγωγή χαρακτηριστικών (feature extraction), η οποία είναι χρονοβόρα. Παρ’ όλη την αποτελεσματικότητα του SHM στην ανίχνευση βλαβών, η εξαγωγή χαρακτηριστικών γίνεται πολύ πιο περίπλοκη στην ταξινόμηση της βλάβης. Επιπλέον, είναι δύσκολο να αποκτηθούν συνθήκες υπό βλάβη από μια κατασκευή, καθώς πρέπει να υποστεί βλάβη σκόπιμα ή να χρησιμοποιηθούν προηγούμενες καταγεγραμμένες βλάβες. Επομένως, είναι σύνηθες να υπάρχουν πολύ λιγότερα πειράματα υπό βλάβη της κατασκευής από ότι υγιή πειράματα και έτσι η ανίχνευση βλαβών δυσκολεύει περεταίρω. Στη διπλωματική αυτή, αντιμετωπίζουμε αρχικά το ζήτημα της αβεβαιότητας και της ανίχνευσης και ταξινόμησης βλαβών προσεγγίζοντας το SHM με τεχνικές επιτηρούμενης μηχανικής μάθησης κατά τη διάρκεια της ταλαντωτικής λειτουργίας της πίσω πτέρυγας ενός μη επανδρωμένου αεροσκάφους (UAV). Ένα μοντέλο επιτηρούμενης μάθησης ανίχνευσε τις υγιείς ή υπό βλάβη καταστάσεις και στη συνέχεια ταξινόμησε τις βλάβες σε μια συγκεκριμένη κατηγορία (6 διαφορετικές καταστάσεις υπό βλάβη). Τα ληφθέντα σήματα χρησιμοποιήθηκαν ως είσοδοι χρονοσειρών σε μονοδιάστατα συνελικτικά νευρωνικά δίκτυα (CNN1D). Χρησιμοποιώντας ίσο αριθμό υγιών / υπό βλάβη πειραμάτων, προεπεξεργασία σήματος και βελτιστοποίηση των υπερπαραμέτρων, το μοντέλο πέτυχε ακρίβεια 100% στο πρόβλημα ανίχνευσης βλάβης με επίπεδο ψευδούς συναγερμού μεγαλύτερο του 0.5% και ακρίβεια 97% στην ταξινόμηση της βλάβης (6 διαφορετικά σενάρια υπό βλάβη), κάτι που είναι αρκετά δύσκολο για το SHM, με μόλις 0.5% ψευδούς συναγερμού. Το μοντέλο ανίχνευσης βλάβης απέδωσε υψηλότερα από προϋπάρχουσες τεχνικές SHM, ενώ το μοντέλο κατηγοριοποίησης της βλάβης ήταν ένα καινοτόμο στοιχείο σε αυτήν την εργασία. Επιπρόσθετα, εφαρμόσθηκε ένα μοντέλο ενισχυτικής μάθησης για την ανίχνευση βλάβης σε ένα διαφορετικό πλήθος σημάτων ανά κατηγορία. Παρόλο που εδώ η επιτηρούμενη μάθηση απέτυχε να ανιχνεύσει την κατάσταση της κατασκευής, χρησιμοποιώντας έναν συνδυασμό από βαθιά Q-δίκτυα (DQN) και CNN1D, αποδείξαμε ότι η προσέγγιση της ενισχυτικής μάθησης πέτυχε ακρίβεια παραπάνω από 99% των πειραμάτων. 2020-08-02T12:46:46Z 2020-08-02T12:46:46Z 2020-07-05 http://hdl.handle.net/10889/13750 en application/pdf