Διάγνωση καρδιακών ασθενειών με ευφυείς μεθόδους

Ένα από τα πιο σημαντικά ζητήματα στον τομέα της Ιατρικής είναι η έγκαιρη και έγκυρη διάγνωση ασθενειών. Για τον σκοπό αυτό έχουν χρησιμοποιηθεί διάφορες μέθοδοι μηχανικής μάθησης, οι οποίες μπορούν να δώσουν ακριβή αποτελέσματα σε σύντομο χρονικό διάστημα. Μια ενδιαφέρουσα και αποτελεσματική μέθο...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Καραδήμος, Νικόλαος
Άλλοι συγγραφείς: Karadimos, Nikolaos
Γλώσσα:Greek
Έκδοση: 2020
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/13893
Περιγραφή
Περίληψη:Ένα από τα πιο σημαντικά ζητήματα στον τομέα της Ιατρικής είναι η έγκαιρη και έγκυρη διάγνωση ασθενειών. Για τον σκοπό αυτό έχουν χρησιμοποιηθεί διάφορες μέθοδοι μηχανικής μάθησης, οι οποίες μπορούν να δώσουν ακριβή αποτελέσματα σε σύντομο χρονικό διάστημα. Μια ενδιαφέρουσα και αποτελεσματική μέθοδος είναι αυτή των νευρωνικών δικτυών. Η ιστορία των νευρωνικών δικτύων ξεκινάει περίπου την δεκαετία του 1940 και 1950, με αφετηρία τον νευρώνα των McCulloch-Pitts, ενώ παράλληλα έκανε την εμφάνισή του και ο πρώτος αλγόριθμος εκπαίδευσης, o γνωστός Perceptron. Τα τελευταία χρόνια με την ραγδαία εξέλιξη των υπολογιστικών πόρων (CPUs, GPUs κτλ) και με την συσσώρευση τεράστιου όγκου δεδομένων, τα νευρωνικά δικτύα βρίσκουν ολοένα και περισσότερη εφαρμογή σε διάφορους τομείς της επιστήμης μεταξύ των οποίων είναι και η Ιατρική. Ιδιαιτερά στον τομέα της Ιατρικής τα νευρωνικά δίκτυα και η βαθειά μηχανική μάθηση (deep learning) χρησιμοποιούνται ευρέως και με ικανοποιητική αποτελεσματικότητα για την διάγνωση διαφόρων ασθενιών και την ληψη αποφάσεων. Στα πλαίσια λοίπoν της εφαρμογής των νευρωνικών δικτυών στον τομέα της Ιατρικής κινείται και η παρούσα διπλωματική εργασία, η οποία ασχολείται με ένα ιδιαίτερα ενδιαφέρον ζήτημα της διάγνωσης καρδιακών αρρυθμιών και συγκεκριμένα της κολπικής μαρμαρυγής, με την χρήση νευρωνικών δικτύων και τεχνικών βαθειάς μηχανικής μάθησης. Για τις ανάγκες της εργασιάς χρησιμοποιήθηκαν ηλεκτροκαρδιογραφήματα δύο κατηγορίων. Η μια κατηγορία αφόρα άτομα με φυσιολογική δραστηριότητα της καρδιάς, ενώ η άλλη κατηγορία αφόρα ασθενείς οι οποίοι διαγνώστηκαν με κολπική μαρμαρυγή. Για την συλλογή των δεδομένων χρησιμοποιήθηκε η πλατφόρμα Physionet και στην συνέχεια με την κατάλληλη επεξεργασία τα ηλεκτροκαρδιογραφήματα χρησιμοποιήθηκαν ως είσοδος ενός νευρωνικού δικτύου 8 κρυφών επιπέδων. Για την εκπαίδευση του νευρωνικού δικτύου έγιναν αρκετές δοκιμές κυριώς όσον αφορά των αριθμό των επίπεδων τον αριθμό των νευρώνων ανά επίπεδο, το ρυθμό εκπαίδευσης και άλλων παραμέτρων τα οποία παρούσιαζονται αναλυτικότερα σε παρακάτω κεφάλαια. Ως γλώσσα προγραμματισμού χρησιμοποιήθηκε η Python, η οποία τα τελευταία χρόνια είναι αρκετά δημοφιλής στον τομέα της τεχνητής νοημοσύνης και της μηχανικής μάθησης καθώς διαθέτει μια πληθώρα βιβλιοθηκών, όπως Tensorflow, Keras κτλ.