Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων

Η γονιδιωματική σταθερότητα διατηρείται μέσω του συντονισμού μεταξύ των μηχανισμών του φυσιολογικού κυτταρικού κύκλου και των μηχανισμών απόκρισης σε βλάβη στο γενετικό υλικό. Οι παράγοντες που διαδραματίζουν κομβικό ρόλο στη διασύνδεση των συγκεκριμένων μηχανισμών καθίστανται ιδιαίτερα σημαντικοί....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Παναγόπουλος, Ανδρέας
Άλλοι συγγραφείς: Λυγερού, Ζωή
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2020
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/13944
id nemertes-10889-13944
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Γονιδιωματική σταθερότητα
Λειτουργική μικροσκοπία
Βλάβες στο γενετικό υλικό
Ακτινοβολία
Πρωτεόλυση
Επιδιόρθωση διπλών θραύσεων στο γενετικό υλικό
Genome stability
Functional imaging
DNA damage
Irradiation
Proteolysis
Double strand break repair
572.862 9
spellingShingle Γονιδιωματική σταθερότητα
Λειτουργική μικροσκοπία
Βλάβες στο γενετικό υλικό
Ακτινοβολία
Πρωτεόλυση
Επιδιόρθωση διπλών θραύσεων στο γενετικό υλικό
Genome stability
Functional imaging
DNA damage
Irradiation
Proteolysis
Double strand break repair
572.862 9
Παναγόπουλος, Ανδρέας
Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
description Η γονιδιωματική σταθερότητα διατηρείται μέσω του συντονισμού μεταξύ των μηχανισμών του φυσιολογικού κυτταρικού κύκλου και των μηχανισμών απόκρισης σε βλάβη στο γενετικό υλικό. Οι παράγοντες που διαδραματίζουν κομβικό ρόλο στη διασύνδεση των συγκεκριμένων μηχανισμών καθίστανται ιδιαίτερα σημαντικοί. Χαρακτηριστικά παραδείγματα αποτελούν τα Cdt1 και Cdc6 που συμβάλλουν στην αδειοδότηση της αντιγραφής του γενετικού υλικού. Μάλιστα, οι εν λόγω παράγοντες διαδραματίζουν κομβικό ρόλο στον καρκίνο όπου η υπερέκφρασή τους οδηγεί σε γονιδιωματική αστάθεια και επικράτηση κυττάρων με ογκογονικές ιδιότητες. Επιπρόσθετα, η σημαντικότητα τους υποδεικνύεται και από το γεγονός πως ένα ευρύ φάσμα μηχανισμών είναι υπεύθυνο για τη ρύθμισή τους τόσο κατά το φυσιολογικό κυτταρικό κύκλο όσο και μετά από βλάβη στο γενετικό υλικό. Η περιοδική πρωτεόλυση πρωτεϊνών είναι ιδιαίτερα σημαντική για τη διατήρηση της κυτταρικής φυσιολογίας. Η διαδικασία της πρωτεόλυσης πραγματοποιείται μέσω της πρόσδεσης αλυσίδων ουβικουϊτίνης στις πρωτεΐνες-υποστρώματα, οι οποίες στη συνέχεια καθίστανται στόχοι αποικοδόμησης από το πρωτεάσωμα. Η λιγάση της ουβικουϊτίνης CRL4Cdt2 αποτελεί ένα σύμπλοκο υπεύθυνο για την ουβικουϊτινιλίωση μεγάλου αριθμού μορίων που συμβάλλουν στην πρόοδο του κυτταρικού κύκλου. Η ρύθμιση μέσω αυτού του συμπλόκου πραγματοποιείται μέσω της πρόσδεσης του υποστρώματος στο PCNA που βρίσκεται στο DNA. Το CRL4Cdt2 είναι ενεργό κατά τη διάρκεια της S φάσης και μετά από βλάβη στο γενετικό υλικό. Παρά το γεγονός πως η εν λόγω λιγάση της ουβικουϊτίνης αποτελεί έναν κεντρικό ρυθμιστή της γονιδιωματικής σταθερότητας εντούτοις ο μοριακός μηχανισμός αναγνώρισης υποστρώματος δεν είχε διαλευκανθεί πλήρως. Το μέχρι πρόσφατα επικρατές μοντέλο όριζε πως το CRL4Cdt2 στρατολογείται στη χρωματίνη αφού πρώτα έχει σχηματιστεί το σύμπλοκο PCNA-υπόστρωμα. Ερευνητικά δεδομένα από διάφορες ομάδες υποδείκνυαν ένα διαφορετικό μηχανισμό σε σχέση με το συγκεκριμένο μοντέλο. Στην παρούσα διατριβή, με τη χρήση μεταλλαγμάτων του υποδοχέα υποστρώματος της λιγάσης, Cdt2 και ακτινοβολίας UV-C καταφέραμε να διαπιστώσουμε πως η συσσώρευση στην περιοχή της βλάβης πραγματοποιείται μέσω του καρβοξυ-τελικού τμήματος της πρωτεΐνης και συγκεκριμένα μέσω μοτίβου PIP-box που εδράζεται στο καρβόξυ-τελικό άκρο. Τα συγκεκριμένα δεδομένα οδήγησαν στην περιγραφή ενός νέου μοντέλου για το μηχανισμό αναγνώρισης υποστρώματος όπου η λιγάση και το υπόστρωμα συσσωρεύονται ανεξάρτητα στο PCNA. Στη συνέχεια ακολουθεί η αναγνώριση και η ουβικουϊτινιλίωση του υποστρώματος το οποίο στοχεύεται για πρωτεόλυση. Οι διπλές θραύσεις στο γενετικό υλικό είναι μία από τις πιο επιζήμιες βλάβες και μπορούν να προκληθούν από ενδογενείς διεργασίες ή εξωγενείς παράγοντες. Αν δεν επιδιορθωθούν ή επιδιορθωθούν με λανθασμένο τρόπο μπορεί να προκαλέσουν γονιδιωματική αστάθεια. Οι κύριοι επιδιορθωτικοί μηχανισμοί που έχουν αναπτυχθεί προκειμένου να αντιμετωπιστούν οι εν λόγω βλάβες είναι η Μη-Ομόλογη Σύνδεση των Άκρων (Non-Homologous End Joining, NHEJ) που λειτουργεί καθόλη τη διάρκεια του κυτταρικού κύκλου και είναι επιρρεπής σε λάθη και ο Ομόλογος Ανασυνδυασμός (Homologous Recombination, HR) που λειτουργεί μόνο κατά τις S και G2 φάσεις του κυτταρικού κύκλου και επιδιορθώνει τις διπλές θραύσεις με υψηλή πιστότητα. Όταν οι συγκεκριμένοι μηχανισμοί παρουσιάζουν αδυναμία επιδιόρθωσης των βλαβών στο γενετικό υλικό τότε η επιδιόρθωση επαφίεται στους εναλλακτικούς επιδιορθωτικούς μηχανισμούς που περιλαμβάνουν την Εναλλακτική Σύνδεση των Άκρων (Alternative Non-Homologous End Joining, A-NHEJ) με κύριο υπομονοπάτι τη Σύνδεση των Άκρων ρυθμιζόμενη από Μικρο-ομολογία (Microhomology Mediated End Joining, MMEJ), τη Σύνδεση Μονού Κλώνου (Single Strand Annealing, SSA) και την Επιδιόρθωση Αντιγραφής Επαγόμενης από Θραύση (Break Induced Replication, BIR). Τα συγκεκριμένα επιδιορθωτικά μονοπάτια αν και βελτιώνουν τις πιθανότητες ενός κυττάρου για επιβίωση μετά από βλάβη εντούτοις παρουσιάζονται ιδιαίτερα επιρρεπή σε λάθη. Προηγούμενα ερευνητικά δεδομένα του εργαστηρίου υπέδειξαν την ταχύτατη συσσώρευση του Cdt1 στην περιοχή της εντοπισμένης βλάβης από UV-A παλμικό laser. Στην παρούσα διατριβή πραγματοποιήθηκε εκτεταμένη μελέτη της πιθανής εμπλοκής του Cdt1 στην επιδιόρθωση των διπλών θραύσεων. Τα ερευνητικά δεδομένα από πειράματα με κυτταρικά συστήματα αναφοράς φθορισμού υποδεικνύουν πως ο συγκεκριμένος παράγοντας συμμετέχει στα βασικά μονοπάτια επιδιόρθωσης NHEJ, HR καθώς και στα εναλλακτικά μονοπάτια SSA και BIR. Πειράματα που πραγματοποιήθηκαν με ετοποσίδιο, neocarzinostatin και ακτίνες Χ προκειμένου να διαλευκανθεί το ακριβές σημείο εμπλοκής του Cdt1 στα μονοπάτια επιδιόρθωσης των διπλών θραύσεων δεν οδήγησαν σε κάποιο ξεκάθαρο συμπέρασμα. Στην παρούσα διατριβή διαπιστώθηκε για πρώτη φορά πως ο αδειοδοτικός παράγοντας Cdc6 διαδραματίζει σημαντικό ρόλο στην επιδιόρθωση των διπλών θραύσεων στο γενετικό υλικό. Συγκεκριμένα με τη χρήση UV-A παλμικού laser διαπιστώθηκε πως το Cdc6 συσσωρεύεται ταχύτατα στην περιοχή της εντοπισμένης βλάβης. Πειράματα με ετοποσίδιο και neocarzinostatin καθώς και με κυτταρικά συστήματα αναφοράς φθορισμού υπέδειξαν πως το Cdc6 εμπλέκεται στο μονοπάτι NHEJ και συγκεκριμένα στα αρχικά στάδια κατά τη συσσώρευση των παραγόντων 53BP1 και RIF1 στα σημεία της βλάβης. Στον αντίποδα η συσσώρευση στα σημεία βλάβης των παραγόντων του μονοπατιού HR, pRPA και Rad51 δεν επηρεάζεται από το Cdc6. Τα συγκεκριμένα πειράματα υπέδειξαν επίσης πως το Cdc6 εμπλέκεται στην ενεργοποίηση της κινάσης ATM χωρίς ωστόσο να επηρεάζει τη φωσφορυλίωση της ιστόνης H2AX. Τέλος, στην παρούσα διατριβή διαπιστώθηκε πως η απουσία του Cdc6 οδηγεί σε ευαισθητοποίηση των καρκινικών κυττάρων σε επώαση με γενοτοξικούς παράγοντες, γεγονός που υποδεικνύει πως η εμπλοκή του Cdc6 στα μονοπάτια απόκρισης στη βλάβη είναι σημαντική για την επιβίωση των κυττάρων. Παράλληλα, υποδεικνύει πως η αποσιώπηση του Cdc6 μπορεί να χρησιμοποιηθεί σε θεραπευτικές προσεγγίσεις για την καταπολέμηση του καρκίνου.
author2 Λυγερού, Ζωή
author_facet Λυγερού, Ζωή
Παναγόπουλος, Ανδρέας
format Thesis
author Παναγόπουλος, Ανδρέας
author_sort Παναγόπουλος, Ανδρέας
title Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
title_short Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
title_full Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
title_fullStr Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
title_full_unstemmed Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
title_sort διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων
publishDate 2020
url http://hdl.handle.net/10889/13944
work_keys_str_mv AT panagopoulosandreas diereunēsēparagontōnpousymballounstēgonidiōmatikēstatherotētametechnikesleitourgikēsmikroskopiaszōntanōnkyttarōn
AT panagopoulosandreas studyoffactorswhichcontributetogenomestabilitywithfunctionallivecellimagingtechniques
_version_ 1771297291404050432
spelling nemertes-10889-139442022-09-05T20:44:13Z Διερεύνηση παραγόντων που συμβάλλουν στη γονιδιωματική σταθερότητα με τεχνικές λειτουργικής μικροσκοπίας ζωντανών κυττάρων Study of factors which contribute to genome stability with functional live cell imaging techniques Παναγόπουλος, Ανδρέας Λυγερού, Ζωή Λυγερού, Ζωή Ταραβήρας, Σταύρος Φουστέρη, Μαρία Ρούκος, Βασίλειος Πεφάνη, Δάφνη-Ελευθερία Καρδαμάκης, Δημήτριος Γοργούλης, Βασίλειος Panagopoulos, Andreas Γονιδιωματική σταθερότητα Λειτουργική μικροσκοπία Βλάβες στο γενετικό υλικό Ακτινοβολία Πρωτεόλυση Επιδιόρθωση διπλών θραύσεων στο γενετικό υλικό Genome stability Functional imaging DNA damage Irradiation Proteolysis Double strand break repair 572.862 9 Η γονιδιωματική σταθερότητα διατηρείται μέσω του συντονισμού μεταξύ των μηχανισμών του φυσιολογικού κυτταρικού κύκλου και των μηχανισμών απόκρισης σε βλάβη στο γενετικό υλικό. Οι παράγοντες που διαδραματίζουν κομβικό ρόλο στη διασύνδεση των συγκεκριμένων μηχανισμών καθίστανται ιδιαίτερα σημαντικοί. Χαρακτηριστικά παραδείγματα αποτελούν τα Cdt1 και Cdc6 που συμβάλλουν στην αδειοδότηση της αντιγραφής του γενετικού υλικού. Μάλιστα, οι εν λόγω παράγοντες διαδραματίζουν κομβικό ρόλο στον καρκίνο όπου η υπερέκφρασή τους οδηγεί σε γονιδιωματική αστάθεια και επικράτηση κυττάρων με ογκογονικές ιδιότητες. Επιπρόσθετα, η σημαντικότητα τους υποδεικνύεται και από το γεγονός πως ένα ευρύ φάσμα μηχανισμών είναι υπεύθυνο για τη ρύθμισή τους τόσο κατά το φυσιολογικό κυτταρικό κύκλο όσο και μετά από βλάβη στο γενετικό υλικό. Η περιοδική πρωτεόλυση πρωτεϊνών είναι ιδιαίτερα σημαντική για τη διατήρηση της κυτταρικής φυσιολογίας. Η διαδικασία της πρωτεόλυσης πραγματοποιείται μέσω της πρόσδεσης αλυσίδων ουβικουϊτίνης στις πρωτεΐνες-υποστρώματα, οι οποίες στη συνέχεια καθίστανται στόχοι αποικοδόμησης από το πρωτεάσωμα. Η λιγάση της ουβικουϊτίνης CRL4Cdt2 αποτελεί ένα σύμπλοκο υπεύθυνο για την ουβικουϊτινιλίωση μεγάλου αριθμού μορίων που συμβάλλουν στην πρόοδο του κυτταρικού κύκλου. Η ρύθμιση μέσω αυτού του συμπλόκου πραγματοποιείται μέσω της πρόσδεσης του υποστρώματος στο PCNA που βρίσκεται στο DNA. Το CRL4Cdt2 είναι ενεργό κατά τη διάρκεια της S φάσης και μετά από βλάβη στο γενετικό υλικό. Παρά το γεγονός πως η εν λόγω λιγάση της ουβικουϊτίνης αποτελεί έναν κεντρικό ρυθμιστή της γονιδιωματικής σταθερότητας εντούτοις ο μοριακός μηχανισμός αναγνώρισης υποστρώματος δεν είχε διαλευκανθεί πλήρως. Το μέχρι πρόσφατα επικρατές μοντέλο όριζε πως το CRL4Cdt2 στρατολογείται στη χρωματίνη αφού πρώτα έχει σχηματιστεί το σύμπλοκο PCNA-υπόστρωμα. Ερευνητικά δεδομένα από διάφορες ομάδες υποδείκνυαν ένα διαφορετικό μηχανισμό σε σχέση με το συγκεκριμένο μοντέλο. Στην παρούσα διατριβή, με τη χρήση μεταλλαγμάτων του υποδοχέα υποστρώματος της λιγάσης, Cdt2 και ακτινοβολίας UV-C καταφέραμε να διαπιστώσουμε πως η συσσώρευση στην περιοχή της βλάβης πραγματοποιείται μέσω του καρβοξυ-τελικού τμήματος της πρωτεΐνης και συγκεκριμένα μέσω μοτίβου PIP-box που εδράζεται στο καρβόξυ-τελικό άκρο. Τα συγκεκριμένα δεδομένα οδήγησαν στην περιγραφή ενός νέου μοντέλου για το μηχανισμό αναγνώρισης υποστρώματος όπου η λιγάση και το υπόστρωμα συσσωρεύονται ανεξάρτητα στο PCNA. Στη συνέχεια ακολουθεί η αναγνώριση και η ουβικουϊτινιλίωση του υποστρώματος το οποίο στοχεύεται για πρωτεόλυση. Οι διπλές θραύσεις στο γενετικό υλικό είναι μία από τις πιο επιζήμιες βλάβες και μπορούν να προκληθούν από ενδογενείς διεργασίες ή εξωγενείς παράγοντες. Αν δεν επιδιορθωθούν ή επιδιορθωθούν με λανθασμένο τρόπο μπορεί να προκαλέσουν γονιδιωματική αστάθεια. Οι κύριοι επιδιορθωτικοί μηχανισμοί που έχουν αναπτυχθεί προκειμένου να αντιμετωπιστούν οι εν λόγω βλάβες είναι η Μη-Ομόλογη Σύνδεση των Άκρων (Non-Homologous End Joining, NHEJ) που λειτουργεί καθόλη τη διάρκεια του κυτταρικού κύκλου και είναι επιρρεπής σε λάθη και ο Ομόλογος Ανασυνδυασμός (Homologous Recombination, HR) που λειτουργεί μόνο κατά τις S και G2 φάσεις του κυτταρικού κύκλου και επιδιορθώνει τις διπλές θραύσεις με υψηλή πιστότητα. Όταν οι συγκεκριμένοι μηχανισμοί παρουσιάζουν αδυναμία επιδιόρθωσης των βλαβών στο γενετικό υλικό τότε η επιδιόρθωση επαφίεται στους εναλλακτικούς επιδιορθωτικούς μηχανισμούς που περιλαμβάνουν την Εναλλακτική Σύνδεση των Άκρων (Alternative Non-Homologous End Joining, A-NHEJ) με κύριο υπομονοπάτι τη Σύνδεση των Άκρων ρυθμιζόμενη από Μικρο-ομολογία (Microhomology Mediated End Joining, MMEJ), τη Σύνδεση Μονού Κλώνου (Single Strand Annealing, SSA) και την Επιδιόρθωση Αντιγραφής Επαγόμενης από Θραύση (Break Induced Replication, BIR). Τα συγκεκριμένα επιδιορθωτικά μονοπάτια αν και βελτιώνουν τις πιθανότητες ενός κυττάρου για επιβίωση μετά από βλάβη εντούτοις παρουσιάζονται ιδιαίτερα επιρρεπή σε λάθη. Προηγούμενα ερευνητικά δεδομένα του εργαστηρίου υπέδειξαν την ταχύτατη συσσώρευση του Cdt1 στην περιοχή της εντοπισμένης βλάβης από UV-A παλμικό laser. Στην παρούσα διατριβή πραγματοποιήθηκε εκτεταμένη μελέτη της πιθανής εμπλοκής του Cdt1 στην επιδιόρθωση των διπλών θραύσεων. Τα ερευνητικά δεδομένα από πειράματα με κυτταρικά συστήματα αναφοράς φθορισμού υποδεικνύουν πως ο συγκεκριμένος παράγοντας συμμετέχει στα βασικά μονοπάτια επιδιόρθωσης NHEJ, HR καθώς και στα εναλλακτικά μονοπάτια SSA και BIR. Πειράματα που πραγματοποιήθηκαν με ετοποσίδιο, neocarzinostatin και ακτίνες Χ προκειμένου να διαλευκανθεί το ακριβές σημείο εμπλοκής του Cdt1 στα μονοπάτια επιδιόρθωσης των διπλών θραύσεων δεν οδήγησαν σε κάποιο ξεκάθαρο συμπέρασμα. Στην παρούσα διατριβή διαπιστώθηκε για πρώτη φορά πως ο αδειοδοτικός παράγοντας Cdc6 διαδραματίζει σημαντικό ρόλο στην επιδιόρθωση των διπλών θραύσεων στο γενετικό υλικό. Συγκεκριμένα με τη χρήση UV-A παλμικού laser διαπιστώθηκε πως το Cdc6 συσσωρεύεται ταχύτατα στην περιοχή της εντοπισμένης βλάβης. Πειράματα με ετοποσίδιο και neocarzinostatin καθώς και με κυτταρικά συστήματα αναφοράς φθορισμού υπέδειξαν πως το Cdc6 εμπλέκεται στο μονοπάτι NHEJ και συγκεκριμένα στα αρχικά στάδια κατά τη συσσώρευση των παραγόντων 53BP1 και RIF1 στα σημεία της βλάβης. Στον αντίποδα η συσσώρευση στα σημεία βλάβης των παραγόντων του μονοπατιού HR, pRPA και Rad51 δεν επηρεάζεται από το Cdc6. Τα συγκεκριμένα πειράματα υπέδειξαν επίσης πως το Cdc6 εμπλέκεται στην ενεργοποίηση της κινάσης ATM χωρίς ωστόσο να επηρεάζει τη φωσφορυλίωση της ιστόνης H2AX. Τέλος, στην παρούσα διατριβή διαπιστώθηκε πως η απουσία του Cdc6 οδηγεί σε ευαισθητοποίηση των καρκινικών κυττάρων σε επώαση με γενοτοξικούς παράγοντες, γεγονός που υποδεικνύει πως η εμπλοκή του Cdc6 στα μονοπάτια απόκρισης στη βλάβη είναι σημαντική για την επιβίωση των κυττάρων. Παράλληλα, υποδεικνύει πως η αποσιώπηση του Cdc6 μπορεί να χρησιμοποιηθεί σε θεραπευτικές προσεγγίσεις για την καταπολέμηση του καρκίνου. The maintenance of genome stability is achieved by the coordinated action of the cell cycle machinery and the DNA damage response. Factors linking these processes are therefore pivotal. Cdt1 and Cdc6 are factors which participate in the licensing of DNA replication and have been postulated to link the physiological cell cycle and the DNA damage response. They possess a crucial role in cancer where their overexpression leads to genomic instability and to the appearance of cells with oncogenic properties. Their importance is also highlighted by the wide spectrum of mechanisms that are responsible for their regulation both during the physiological cell cycle and upon DNA damage. Periodic proteolysis of proteins is of major importance for cellular homeostasis. This procedure is carried out by the attachment of ubiquitin chains on the substrates. Then, these substrates are targeted for proteasomal degradation. CRL4Cdt2 ubiquitin ligase is a complex responsible for the ubiquitination of molecules that are crucial for the progression of the cell cycle. This regulation is achieved through the attachment of substrates onto PCNA on DNA. Despite the fact that CRL4Cdt2 is considered a master regulator of genome stability, the molecular mechanism of substrate recognition remains elusive. The prevalent model indicated that the ubiquitin ligase is recruited onto PCNA through binding to its substrate. However, several findings questioned this model. In this thesis, by employing mutants of the substrate receptor Cdt2 and UV-C radiation we were able to show that the recruitment of the ligase onto PCNA is carried out by the C-terminal part of the protein and not by the N-terminal part as previously suggested. In particular a PIP-box motif located at its extreme C-terminus is important for the binding onto PCNA. These data point towards a new model for the molecular mechanism of substrate recognition which indicates that the substrate and the ligase are independently recruited onto different subunits of the DNA-bound PCNA. Subsequently, substrate recognition and ubiquitination take place on DNA followed by proteasomal degradation. Double strand breaks are one of the most detrimental forms of DNA damage and can be caused from endogenous processes or exogenous sources. If not repaired or if repaired in an erroneous way, they can cause genomic instability. The main mechanisms which are responsible for the repair of this kind of damage are Non-Homologous End Joining (NHEJ) which is active throughout the cell cycle and is prone to errors and Homologous Recombination (HR) which is active during S and G2 phases of the cell cycle and restores the original DNA sequence. Alternative repair pathways take over when the main mechanisms are not capable of repairing the damage. These mechanisms are comprised of Alternative Non-Homologous End Joining with the main sub-pathway Microhomology Mediated End Joining (MMEJ), Single Strand Annealing (SSA) and Break Induced Replication (BIR). Even though these pathways improve the chances of cellular survival they are prone to errors. Previous data from our laboratory indicated that Cdt1 is rapidly recruited at the site of the UV-A laser induced localized DNA damage. We extensively studied the possible implication of Cdt1 in double strand break repair. GFP-reporter assays indicate that Cdt1 is implicated in all the repair pathways studied, namely NHEJ, HR, SSA and BIR. However, experiments carried out with the use of etoposide, neocarzinostatin and X-Rays provided inconclusive results regarding the step of double strand break repair at which Cdt1 is implicated. In this thesis, Cdc6 was identified for the first time as a factor which participates in double strand break repair. In particular, by employing a UV-A pulsed laser system we were able to show that Cdc6 exhibits rapid recruitment at the site of damage. Experiments with the use of etoposide, neocarzinostatin and GFP-reporter assays showed that Cdc6 is implicated in NHEJ and specifically in the recruitment of 53BP1 and RIF1 at the site of damage. In contrast, the HR factors pRPA and Rad51 appear unaffected. The activation of ATM kinase is also affected by the absence of Cdc6 whereas γH2AX appears unaffected. Finally, the absence of Cdc6 renders cancer cells sensitive to genotoxic agents indicating that Cdc6 involvement in the DNA damage response is important for cell survival following damage and suggest that silencing of Cdc6 could be used for therapeutic purposes when treating cancer. 2020-10-08T06:45:52Z 2020-10-08T06:45:52Z 2019-09-23 Thesis http://hdl.handle.net/10889/13944 gr 12 application/pdf