Αρχιτεκτονικές VLSI modem χαμηλής κατανάλωσης για ασύρματα δίκτυα OFDM : ο ρόλος της εναλλακτικής αριθμητικής

Η διαμόρφωση με πολύπλεξη συχνότητας ορθογωνίων φερουσών (Orthogonal Frequency Division Multiplexing - OFDM) έχει εδραιωθεί ως μία από τις επικρατέστερες μεθόδους διαμόρφωσης για την υψηλού ρυθμού μετάδοση πληροφορίας μέσω ασύρματων μέσων. Σε ένα σύστημα OFDM, ένα από τα βασικότερα και υπολογιστικά...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Μπροκαλάκης, Ανδρέας
Άλλοι συγγραφείς: Παλιουράς, Βασίλειος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2009
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/1478
Περιγραφή
Περίληψη:Η διαμόρφωση με πολύπλεξη συχνότητας ορθογωνίων φερουσών (Orthogonal Frequency Division Multiplexing - OFDM) έχει εδραιωθεί ως μία από τις επικρατέστερες μεθόδους διαμόρφωσης για την υψηλού ρυθμού μετάδοση πληροφορίας μέσω ασύρματων μέσων. Σε ένα σύστημα OFDM, ένα από τα βασικότερα και υπολογιστικά πολυπλοκότερα τμήματα είναι ο υπολογισμούς του Ταχύ Μετασχηματισμού Fourier. Αντικείμενο της εργασίας αυτής είναι η μελέτη της χρήσης εναλλακτικής αριθμητικής για την υλοποίηση κυκλωμάτων FFT. Τυπικά, τέτοιου είδους κυκλώματα υλοποιούνται χρησιμοποιώντας κάποια γραμμική αναπαράσταση σταθερής υποδιαστολής. Στη βιβλιογραφία έχουν προταθεί υλοποιήσεις του FFT με χρήση του Λογαριθμικού Συστήματος Αρίθμησης (Logarithmic Numbering System – LNS) και έχουν αναφερθεί κέρδη για συγκεκριμένους παράγοντες όπως το σφάλμα κβαντισμού, η επιφάνεια ολοκλήρωσης και η κατανάλωση ισχύος. Η αποδοτικότητα αυτών των λύσεων ερευνάται για τη συγκεκριμένη περίπτωση της εφαρμογής του FFT σε OFDM modems. Εστιάζοντας στην περίπτωση του FFT 64 σημείων για OFDM modem για ασύρματα δίκτυα 802.11a, μία από τις πλέον επιτυχημένες αρχιτεκτονικές που έχουν προταθεί για την υλοποίηση του, στηρίζεται στη λογική του FFT γραμμής – στήλης και παρουσιάζει έναν τρόπο πραγματοποίησης του υπολογισμού χωρίς κανένα ψηφιακό πολλαπλασιαστή. Με το βασικό πλεονέκτημα της λογαριθμικής αναπαράστασης να είναι η απλοποίηση των κυκλωμάτων πολλαπλασιασμού (με ταυτόχρονη όμως αύξηση του κόστους για την πραγματοποίηση προσθέσεων), δείχνεται ότι τελικά η υλοποίηση ενός FFT αμιγώς σε LNS δεν είναι προτιμητέα. Αν και η αρχιτεκτονική του FFT γραμμής – στήλης μπορεί να προσφέρει υψηλή απόδοση με χαμηλό κόστος υλοποίησης, παρουσιάζει μια σειρά από αδυναμίες, που σχετίζονται κυρίως με τη χρήση ειδικών κυκλωμάτων για την εκτέλεση των πολλαπλασιασμών με τις σταθερές που εμφανίζονται στον FFT (twiddle factors). Για την αντιμετώπιση αυτών των περιορισμών προτείνεται η εισαγωγή του LNS σε κάποια τμήματα του κυκλώματος του FFT, οδηγώντας έτσι στη δημιουργία ενός συστήματος μικτής αναπαράστασης. Σε τέτοιου είδους υβριδικά συστήματα τίθενται δύο βασικά ζητήματα. Το πρώτο αφορά τον ορισμό της ισοδυναμίας μεταξύ των διαφορετικών αναπαραστάσεων και το δεύτερο τον αποδοτικό τρόπο υλοποίησης των κυκλωμάτων μετατροπής από το ένα αριθμητικό σύστημα στο άλλο. Τυπικά, τα κριτήρια ισοδυναμίας που επιλέγονται είναι αυστηρά μαθηματικά ορισμένα, όπως για παράδειγμα ο Λόγος Σήματος προς Θόρυβο (Signal-to-Noise Ratio - SNR) ή το Μέσο Σχετικό Σφάλμα Αναπαράστασης (Average Relative Representation Error – ARRE). Στη συγκεκριμένη εργασία ακολουθείται μια λιγότερο δεσμευτική προσέγγιση, ορίζοντας την ισοδυναμία δύο αναπαραστάσεων με βάση την τελική απόδοση του συστήματος OFDM όσον αφορά το ρυθμό λαθών στο δέκτη (Bit Error Rate - BER). Με βάση αυτή τη λογική, αποδεικνύεται ότι μπορούν να χρησιμοποιηθούν αναπαραστάσεις πολύ μικρού μεγέθους λέξης και οι προσεγγίσεις που χρειάζεται να γίνουν κατά τις μετατροπές μεταξύ των δύο συστημάτων δεν είναι ανάγκη να είναι ιδιαίτερα ακριβείς. Έτσι, τα σχετικά κυκλώματα μπορούν να υλοποιηθούν αποδοτικά και με μικρό κόστος. Η υλοποίηση δύο συστημάτων για τον FFT 64 σημείων, ένα βασισμένο αποκλειστικά σε γραμμική αναπαράσταση σταθερής υποδιαστολής και ένα υβριδικό που χρησιμοποιεί γραμμική και λογαριθμική αναπαράσταση, δείχνει ότι χωρίς διαφορές όσον αφορά το BER και την καθυστέρηση (delay), η υβριδική προσέγγιση απαιτεί μικρότερη επιφάνεια ολοκλήρωσης και παρουσιάζει σημαντικά χαμηλότερη κατανάλωση ισχύος.