Σχεδιασμός και ανάλυση αλγορίθμων σε Τυχαία Γραφήματα Τομής

Στη διπλωματική αυτή εργασία ορίζουμε δυο νέα μοντέλα τυχαίων γραφημάτων τομής ετικετών και εξετάζονται ως προς ορισμένες σημαντικές γραφοθεωρητικές ιδιότητές τους. Ένα τυχαίο γράφημα τομής ετικετών παράγεται αντιστοιχώντας σε κάθε κορυφή ένα \\\\emph{τυχαίο} υποσύνολο ενός πεπερασμένου) σύμπαντος $...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ραπτόπουλος, Χριστόφορος
Άλλοι συγγραφείς: Νικολετσέας, Σωτήρης
Έκδοση: 2007
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/155
Περιγραφή
Περίληψη:Στη διπλωματική αυτή εργασία ορίζουμε δυο νέα μοντέλα τυχαίων γραφημάτων τομής ετικετών και εξετάζονται ως προς ορισμένες σημαντικές γραφοθεωρητικές ιδιότητές τους. Ένα τυχαίο γράφημα τομής ετικετών παράγεται αντιστοιχώντας σε κάθε κορυφή ένα \\\\emph{τυχαίο} υποσύνολο ενός πεπερασμένου) σύμπαντος $M$ από $m$ στοιχεία και βάζοντας μια ακμή μεταξύ δυο κορυφών αν και μόνον εάν τα αντίστοιχα σύνολά τους έχουν μη κενή τομή. Συγκεκριμενοποιώντας την κατανομή που ακολουθεί το τυχαίο υποσύνολο που αντιστοιχείται σε κάθε κορυφή παίρνουμε διαφορετικά μοντέλα τυχαίων γραφημάτων τομής. Στο γενικευμένο μοντέλο τυχαίων γραφημάτων τομής κάθε στοιχείο $i$ του $M$ επιλέγεται ανεξάρτητα από κάθε κορυφή με πιθανότητα $p_i$. Το ομοιόμορφο μοντέλο τυχαίων γραφημάτων τομής ετικετών αποτελεί μια ειδική περίπτωση του γενικευμένου μοντέλου όπου η πιθανότητα επιλογής των στοιχείων του $M$ είναι ίση με $p$, δηλαδή ίδια για όλα τα στοιχεία του $M$. Όπως θα δούμε, για ορισμένες τιμές των παραμέτρων $m$ και $p$, το ομοιόμορφο μοντέλο είναι ισοδύναμο με το μοντέλο $G_{n, \\\\hat{p}}$, δηλαδή με το μοντέλο τυχαίων γραφημάτων στο οποίο κάθε πλευρά εμφανίζεται στοχαστικά ανεξάρτητα με πιθανότητα $\\\\hat{p}$. Τέλος, στο κανονικό μοντέλο τυχαίων γραφημάτων τομής ετικετών το υποσύνολο του $M$ που αντιστοιχείται σε κάθε κορυφή έχει σταθερό αριθμό στοιχείων. Λόγω της στοχαστικής εξάρτησης που υποννοείται για την ύπαρξη πλευρών, τα γραφήματα αυτά θεωρούνται αρκετά ρεαλιστικά μοντέλα (σε σχέση με τα κλασσικά τυχαία γραφήματα) σε πολλές πρακτικές εφαρμογές, ιδιαίτερα σε αλγοριθμικά θέματα δικτύων. Στην εργασία αυτή αρχικά παρουσιάζουμε μερικά χαρακτηριστικά αποτελέσματα από τη σχετική βιβλιογραφία για τα μοντέλα αυτά. Ακόμα, μελετάμε, για πρώτη φορά στη βιβλιογραφία, την ύπαρξη ανεξάρτητων συνόλων κορυφών μεγέθους $k$ στο γενικευμένο μοντέλο τυχαίων γραφημάτων τομής ετικετών, υπολογίζοντας τη μέση τιμή και τη διασπορά του αριθμού τους. Επίσης, προτείνουμε και αναλύουμε τρείς πιθανοτικούς αλγόριθμους που τρέχουν σε μικρό πολυωνυμικό χρόνο (ως προς τον αριθμό των κορυφών και τον αριθμό των στοιχείων του $M$) για την εύρεση αρκετά μεγάλων συνόλων ανεξάρτητων κορυφών.