Μορφογένεση και οριακή ροή κοκκώδους υλικού σε δισδιάστατη κεκλιμένη πειραματική διάταξη

Μελετάμε την ροή κοκκώδους σε κεκλιμένη πειραματική διάταξη δυο διαστάσεων, αποτελούμενη από Κ το πλήθος γραμμές και Μ το πλήθος στήλες δοχείων, τα οποία αναταράσσονται κάθετα. Η ροή του υλικού από δοχείο σε δοχείο περιγράφεται από ένα μοντέλο ροής [Eggers, 1999; Van der Weele, 2008]. Υποκινούμενο...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Τσιάβος, Χρήστος
Άλλοι συγγραφείς: Van der Weele, Jacob-Peter
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2009
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/1595
Περιγραφή
Περίληψη:Μελετάμε την ροή κοκκώδους σε κεκλιμένη πειραματική διάταξη δυο διαστάσεων, αποτελούμενη από Κ το πλήθος γραμμές και Μ το πλήθος στήλες δοχείων, τα οποία αναταράσσονται κάθετα. Η ροή του υλικού από δοχείο σε δοχείο περιγράφεται από ένα μοντέλο ροής [Eggers, 1999; Van der Weele, 2008]. Υποκινούμενοι από δυσλειτουργίες που παρουσιάζονται στις σύγχρονες βιομηχανικές μονάδες μεταφοράς (όπως είναι ο σχηματισμός συσσωματωμάτων), εισάγουμε σταθερή ποσότητα υλικού στην πρώτη γραμμή των δοχείων, και καθορίζουμε τις συνθήκες κάτω από τις οποίες η ροή παραμένει ομαλή και συνεχής μέχρι την τελευταία γραμμή. Ενώ στην περίπτωση μιας και μόνο σειράς δοχείων (Μ=1) η εκροή μηδενίζεται με την εμφάνιση ενός και μόνο συσσωματώματος [Κανελλόπουλος, 2008], για Μ>1 απαιτούνται περισσότερα συσσωματώματα για τον μηδενισμό της. Μελετάμε τον τρόπο με τον οποίο αυτά τα συσσωματώματα διατάσσονται στα δοχεία, ο οποίος πολλές φορές όπως βλέπουμε μπορεί να είναι ιδιαίτερα πολύπλοκος, αποτελώντας έτσι ένα εξαίρετο παράδειγμα μορφογένεσης σε δυναμικά συστήματα [Cross and Hohenberg, 1993]. Εντοπίζουμε τα βασικά χαρακτηριστικά αυτής της μορφογένεσης και εξηγούμε πως αυτά σχετίζονται με το μοντέλο ροής. Για την περαιτέρω μαθηματική και φυσική τους ερμηνεία προτείνουμε το συνεχές όριο του μοντέλου ροής, το οποίο θα αποτελέσει την απαρχή για μελλοντικές έρευνες [Van der Weele et al, 2008]. Αναφορές: •J. Eggers, Sand as Maxwell’s demon, Phys. Rev. Lett. 83, 5322 (1999). •K. van der Weele, Granular gas dynamics: How Maxwell’s demon rules in a nonequilibrium system, Contemporary Phys. 49, 157-175 (2008). •Γ. Κανελλόπουλος, Οριακή ροή κοκκώδους υλικού σε διάδρομο μεταφοράς, Διπλωματική Εργασία, Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών (2008). •M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium, Rev.Mod.Phys. 65, 851 (1993). •K. van der Weele, G. Kanellopoulos, C. Tsiavos, and D. van der Meer, Transient granular shock waves and upstream motion on a staircase (submitted, 2009).