Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής
Στη συγκεκριμένη εργασία ασχολήθηκα με την εκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής που επεξεργάστηκα. Στο θεωρητικό κομμάτι το μεγαλύτερο ενδιαφέρον παρουσίασαν ο Μη Καταστροφικός Έλεγχος και η Ακουστική Εκπομπή, καθώς και οι εφα...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Thesis |
Γλώσσα: | Greek |
Έκδοση: |
2009
|
Θέματα: | |
Διαθέσιμο Online: | http://nemertes.lis.upatras.gr/jspui/handle/10889/1634 |
id |
nemertes-10889-1634 |
---|---|
record_format |
dspace |
spelling |
nemertes-10889-16342022-09-06T05:14:01Z Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής Γρενζελιάς, Αναστάσιος Δερματάς, Ευάγγελος Μουρτζόπουλος, Ιωάννης Δερματάς, Ευάγγελος Grenzelias, Anastasios Συνάρτηση πυκνότητας πιθανότητας Μη καταστροφικός έλεγχος Αλγόριθμος πρόβλεψης-μεγιστοποίησης Ακουστική εκπομπή Probability density function Non destructive control Expectation-maximization algorithm Acoustic emission 620.112 7 Στη συγκεκριμένη εργασία ασχολήθηκα με την εκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής που επεξεργάστηκα. Στο θεωρητικό κομμάτι το μεγαλύτερο ενδιαφέρον παρουσίασαν ο Μη Καταστροφικός Έλεγχος και η Ακουστική Εκπομπή, καθώς και οι εφαρμογές τους. Τα δεδομένα που επεξεργάστηκα χωρίζονται σε δύο κατηγορίες: σε εκείνα που μου δόθηκαν έτοιμα και σε εκείνα που λήφθηκαν μετά από μετρήσεις. Στην επεξεργασία των πειραματικών δεδομένων χρησιμοποιήθηκε ο αλγόριθμος πρόβλεψης-μεγιστοποίησης, τον οποίο μελέτησα θεωρητικά και με βάση τον οποίο εξάχθηκαν οι παράμετροι για κάθε σήμα. Έχοντας βρει τις παραμέτρους, προχώρησα στην ταξινόμηση των σημάτων σε κατηγορίες με βάση τη θεωρία της αναγνώρισης προτύπων. Στο τέλος της εργασίας παρατίθεται το παράρτημα με τα αναλυτικά αποτελέσματα, καθώς και η βιβλιογραφία που χρησιμοποίησα. In this diploma paper the subject was the calculation of the probability density function of parameters which come from signals of sources of acoustic emission. In the theoritical part, the chapters with the greatest interest were Non Destructive Control and Acoustic Emission and their applications. The data which were processed are divided in two categories: those which were given without requiring any laboratory research and those which demanded laboratory research. The expectation-maximization algorithm, which was used in the process of the laboratory data, was the basis for the calculation of the parameters of each signal. Having calculated the parameters, the signals were classified in categories according to the theory of pattern recognition. In the end of the paper, the results and the bibliography which was used are presented. 2009-06-25T05:39:44Z 2009-06-25T05:39:44Z 2009-03-20 2009-06-25T05:39:44Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/1634 gr 0 application/pdf |
institution |
UPatras |
collection |
Nemertes |
language |
Greek |
topic |
Συνάρτηση πυκνότητας πιθανότητας Μη καταστροφικός έλεγχος Αλγόριθμος πρόβλεψης-μεγιστοποίησης Ακουστική εκπομπή Probability density function Non destructive control Expectation-maximization algorithm Acoustic emission 620.112 7 |
spellingShingle |
Συνάρτηση πυκνότητας πιθανότητας Μη καταστροφικός έλεγχος Αλγόριθμος πρόβλεψης-μεγιστοποίησης Ακουστική εκπομπή Probability density function Non destructive control Expectation-maximization algorithm Acoustic emission 620.112 7 Γρενζελιάς, Αναστάσιος Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
description |
Στη συγκεκριμένη εργασία ασχολήθηκα με την εκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής που επεξεργάστηκα. Στο θεωρητικό κομμάτι το μεγαλύτερο ενδιαφέρον παρουσίασαν ο Μη Καταστροφικός Έλεγχος και η Ακουστική Εκπομπή, καθώς και οι εφαρμογές τους. Τα δεδομένα που επεξεργάστηκα χωρίζονται σε δύο κατηγορίες: σε εκείνα που μου δόθηκαν έτοιμα και σε εκείνα που λήφθηκαν μετά από μετρήσεις. Στην επεξεργασία των πειραματικών δεδομένων χρησιμοποιήθηκε ο αλγόριθμος πρόβλεψης-μεγιστοποίησης, τον οποίο μελέτησα θεωρητικά και με βάση τον οποίο εξάχθηκαν οι παράμετροι για κάθε σήμα. Έχοντας βρει τις παραμέτρους, προχώρησα στην ταξινόμηση των σημάτων σε κατηγορίες με βάση τη θεωρία της αναγνώρισης προτύπων. Στο τέλος της εργασίας παρατίθεται το παράρτημα με τα αναλυτικά αποτελέσματα, καθώς και η βιβλιογραφία που χρησιμοποίησα. |
author2 |
Δερματάς, Ευάγγελος |
author_facet |
Δερματάς, Ευάγγελος Γρενζελιάς, Αναστάσιος |
format |
Thesis |
author |
Γρενζελιάς, Αναστάσιος |
author_sort |
Γρενζελιάς, Αναστάσιος |
title |
Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
title_short |
Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
title_full |
Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
title_fullStr |
Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
title_full_unstemmed |
Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
title_sort |
eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής |
publishDate |
2009 |
url |
http://nemertes.lis.upatras.gr/jspui/handle/10889/1634 |
work_keys_str_mv |
AT grenzeliasanastasios ektimēsētēssynartēsēspyknotētaspithanotētasparametrōnpouproerchontaiaposēmatapēgōnakoustikēsekpompēs |
_version_ |
1771297361632428032 |