Περίληψη: | Η κατά συμμετρίες ανάλυση είναι μια σύγχρονή και αποτελεσματική μέθοδος ανάλυσης του μαθηματικού πεδίου των Διαφορικών Εξισώσεων. Στα πλεονεκτήματα της, ο αλγοριθμικός τρόπος με τον οποίο μπορούμε να βρούμε τις συμμετριες ενός συστήματος και η κατακευή λύσεων από αυτές. Όμως, όπως και κάθε άλλη μέθοδος έτσι και αυτή έχει τα μειονεκτήματα της, το μέγεθος και η πολυπλοκότητα των ενδιάμεσων υπολογισμών που απαιτούνται για την εύρεση των συμμετρίων ενός συστήματος αυξάνεται εκθετικά σε σχέση με αυτό. Γεγονός που καθιστά τους υπολογισμούς αυτούς με το χέρι χρονοβόρους και επιρρεπής σε σφάλματα και συνεπώς την ανάγκη για την χρήση αξιόπιστων συμβολικών προγραμμάτων επιτακτική. Για τον σκοπό αυτό αναπτύξαμε το συμβολικό πακέτο Sym για το αλγεβρικό σύστημα Mathematica. Το συμβολικό αυτό πακέτο περιέχει στοιχεία τεχνικής νοημοσύνης και εξιδικευμένες συμβολικές μεθόδους. Στοιχεία που το καθιστούν ένα αποτελεσματικό και ευέλικτο μαθηματικό εργαλείο τόσο στον ερευνητικό τομέα όσο και στην εκπαίδευση.
Το παρόν διδακτορικό χωρίζεται σε δύο μέρη, στο πρώτο παρουσιάζουμε τις βασικές έννοιες της κατα συμμετρίες ανάλυσης διαφορικών εξισώσεων και τους λόγους για τους οποίους η χρήση συμβολικών προγραμμάτων βρίσκει πρόσφορο έδαφος. Στο δεύτερο μέρος, παρουσιάζουμε το συμβολικό πακέτο Sym και δύο ερευνητικά αποτελέσματα της χρήσης του. Όσο αναφορά το ίδιο το πακέτο, δίνουμε τα βασικά του χαρακτηριστικά , τον τρόπο λειτουργίας του και τα οφέλη του σε σχέση με τα ήδη υπάρχοντα συμβολικά πακέτα για την εύρεση συμμετριών. Η χρηστικότητα του παρουσιάζεται μέσω δύο ερευνητικών αποτελεσμάτων. Στο πρώτο, εξετάζουμε ενα πρόβλημα από την περιοχή της Γενικής Σχετικότητας, την εύρεση βαρυτικών κυμάτων. Οι συμμετρίες των εξισώσεων πεδίου του Einstein για την μετρική του Bondi καθορίζονται μέσω του Sym και υποβιβάζουμε με αυτές την τάξη του μή γραμμικού συστήματος. Με υποθέσεις εργασίας πάνω στο σύστημα αυτό δίνουμε ειδικές λύσεις οι οποίες είχαν προκύψει παλίοτερα με άλλες μεθόδους. Τέλος, παρουσιάζουμε τις μελλοντικές μας κατευθύνσεις προς την καθορισμό νέων λύσεων με την σωστή φυσική συμπεριφορά που επιβάλει το πρόβλημα. Στο δεύτερο, δίνουμε μια προτότυπη διαδικασία κατηγοριοποίησης διαφορικών εξισώσεων χρησιμοποιώντας τις ένοιες της πλήρους ομάδας συμετρίας και της αξιοσημείωτης κατά Lie διαφορικής εξίσωσης. Με βάση αυτή, επιτυγχάνουμε την συνθέση διαφορικών εξισώσεων κατασκευάζοντας έτσι καινούργιες οικογένεις διαφορικών εξισώσεων περιέχοντες τις αρχικές μας εξισώσεις.
|