Ιστορική εξέλιξη, ερμηνείες και διδακτικές προσεγγίσεις της έννοιας του απειροστού

Στόχος της παρούσας Διατριβής είναι να ερευνήσει τη διαμόρφωση των αντιλήψεων γύρω από τα απειροστά και τις σχετικές μ’ αυτά επ’ άπειρον διαδικασίες σε δύο κατευθύνσεις: 1. Την ιστορική εξέλιξη και ερμηνεία της έννοιας του απειροστού και 2. Την ανάλυση των σχετικών αντιλήψεων των φοιτητών-αυρια...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Στεργίου, Βιργινία
Άλλοι συγγραφείς: Πατρώνης, Αναστάσιος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2009
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/1932
Περιγραφή
Περίληψη:Στόχος της παρούσας Διατριβής είναι να ερευνήσει τη διαμόρφωση των αντιλήψεων γύρω από τα απειροστά και τις σχετικές μ’ αυτά επ’ άπειρον διαδικασίες σε δύο κατευθύνσεις: 1. Την ιστορική εξέλιξη και ερμηνεία της έννοιας του απειροστού και 2. Την ανάλυση των σχετικών αντιλήψεων των φοιτητών-αυριανών καθηγητών των μαθηματικών. Στο πρώτο μέρος της διατριβής γίνεται ανάλυση και ερμηνεία των αντιλήψεων για τα απειροστά που εκφράστηκαν από την Αρχαία μέχρι τη σύγχρονη εποχή. Η μελέτη αυτή οδηγεί στην κατασκευή ενός ερμηνευτικού πλαισίου που διακρίνει τα ιστορικά ερμηνευτικά πρότυπα (μοντέλα) των απειροστών σε τρία αντιθετικά ζεύγη ως εξής: Ι. Εντασιακά-Εκτασιακά πρότυπα απειροστών. ΙΙ. Ομογενή-Μη ομογενή πρότυπα απειροστών. ΙΙΙ. Μηδενοδύναμα-μη μηδενοδύναμα πρότυπα απειροστών. Το παραπάνω πλαίσιο χρησιμοποιείται στο δεύτερο μέρος της διατριβής ως μεθοδολογικό εργαλείο για το σχεδιασμό διδακτικών πειραμάτων και την ανάλυση των εμπειρικών δεδομένων. Ειδικότερα, έγιναν τρία διδακτικά πειράματα με φοιτητές του Τμήματος των Μαθηματικών. Στο πρώτο πείραμα ερευνήθηκε η έννοια της ταχύτητας σύγκλισης ακολουθίας ως μια διαισθητική προσέγγιση στα απειροστά. Στο δεύτερο πείραμα, ερευνήθηκε η δυνατότητα προσέγγισης στα απειροστά μέσα από κλασσικά θέματα των διακριτών Μαθηματικών, όπως ο υπολογισμός του αθροίσματος των δυνάμεων φυσικών αριθμών. Στο τρίτο πείραμα έγινε διδασκαλία ενός συγκεκριμένου μοντέλου των υπερ-πραγματικών αριθμών και αναλύθηκαν τα αποτελέσματα. Τα κυριότερα συμπεράσματα της διατριβής είναι: 1. Η σημασία της κατασκευής μαθηματικών οντοτήτων που ικανοποιούν τα αξιώματα της Πραγματικής Ανάλυσης, 2. Η σημασία της διαισθητικής προσέγγισης και τα όριά της και 3. Η καταλληλότητα των προτεινόμενων μοντέλων και θεμάτων, ως διδακτικού υλικού.