In-silico rheometry of endothelial cells under start-up shear experiments

The endothelium, a monolayer of endothelial cells (ECs), constitutes the inner cellular lining of the blood vessels (arteries, veins, and capillaries) and the lymphatic system, and therefore is in direct contact with the blood and the circulating cells. It is now recognized to be a main pillar in th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ψαράκη, Κωνσταντίνα
Άλλοι συγγραφείς: Psaraki, Konstantina
Γλώσσα:English
Έκδοση: 2022
Θέματα:
Διαθέσιμο Online:https://hdl.handle.net/10889/23942
id nemertes-10889-23942
record_format dspace
spelling nemertes-10889-239422022-11-16T04:38:01Z In-silico rheometry of endothelial cells under start-up shear experiments Απόκριση του ενδοθηλίου σε αιμοδυναμικές και βιοχημικές μεταβολές Ψαράκη, Κωνσταντίνα Psaraki, Konstantina Poroelasticity Fluid structure interaction Biphasic structure interaction Endothelium Wall shear stress Recirculation Ποροελαστικότητα Ενδοθήλιο The endothelium, a monolayer of endothelial cells (ECs), constitutes the inner cellular lining of the blood vessels (arteries, veins, and capillaries) and the lymphatic system, and therefore is in direct contact with the blood and the circulating cells. It is now recognized to be a main pillar in the control of blood fluidity, platelet aggregation and vascular tone, a predominant factor in the regulation of immunology, inflammation and angiogenesis, a metabolizing and endocrine organ. Therefore, the response of the endothelium in variations of the hemodynamic environment is of vital importance. This implies that we should quantify fundamental dynamic quantities such as the developing shear stresses, the effect of flowing conditions on Wall Shear Stress (WSS), in addition to recirculation zones, which are indicators of atherosclerosis. Because of the (10 μ ) length of the ECs and the invasive nature of hands-on techniques when referring to the human cardiovascular system, such an approach would be difficult to be pursued experimentally. Here, we propose an in-silico rheometric emulation based on start-up and pulsating shear experiments in a representative two-dimensional domain of endothelial monolayer that accounts for the interaction of the blood plasma and the deformable ECs. Moreover, we create a three-dimensional domain representing endothelial cells and nuclei and perform compressive tests in order to investigate the poroelastic nature of the EC’s cytoplasm and retrieve its elasticity depending on the volume fraction of the cytoskeletal network. We present quantitative predictions for the shear and normal stresses on each cell for blood flow under physiological conditions and conclude that the imposition of a uniform, mean stress value above the endothelium does not correspond to true conditions. Finally, we show that wall thinning is slightly more prominent at the locus of high WSS in the range of physiological velocities, but under extreme velocities wall thinning intensely prevails at the locus of flow separation. 2022-11-15T06:25:28Z 2022-11-15T06:25:28Z 2022-04-15 https://hdl.handle.net/10889/23942 en application/pdf
institution UPatras
collection Nemertes
language English
topic Poroelasticity
Fluid structure interaction
Biphasic structure interaction
Endothelium
Wall shear stress
Recirculation
Ποροελαστικότητα
Ενδοθήλιο
spellingShingle Poroelasticity
Fluid structure interaction
Biphasic structure interaction
Endothelium
Wall shear stress
Recirculation
Ποροελαστικότητα
Ενδοθήλιο
Ψαράκη, Κωνσταντίνα
In-silico rheometry of endothelial cells under start-up shear experiments
description The endothelium, a monolayer of endothelial cells (ECs), constitutes the inner cellular lining of the blood vessels (arteries, veins, and capillaries) and the lymphatic system, and therefore is in direct contact with the blood and the circulating cells. It is now recognized to be a main pillar in the control of blood fluidity, platelet aggregation and vascular tone, a predominant factor in the regulation of immunology, inflammation and angiogenesis, a metabolizing and endocrine organ. Therefore, the response of the endothelium in variations of the hemodynamic environment is of vital importance. This implies that we should quantify fundamental dynamic quantities such as the developing shear stresses, the effect of flowing conditions on Wall Shear Stress (WSS), in addition to recirculation zones, which are indicators of atherosclerosis. Because of the (10 μ ) length of the ECs and the invasive nature of hands-on techniques when referring to the human cardiovascular system, such an approach would be difficult to be pursued experimentally. Here, we propose an in-silico rheometric emulation based on start-up and pulsating shear experiments in a representative two-dimensional domain of endothelial monolayer that accounts for the interaction of the blood plasma and the deformable ECs. Moreover, we create a three-dimensional domain representing endothelial cells and nuclei and perform compressive tests in order to investigate the poroelastic nature of the EC’s cytoplasm and retrieve its elasticity depending on the volume fraction of the cytoskeletal network. We present quantitative predictions for the shear and normal stresses on each cell for blood flow under physiological conditions and conclude that the imposition of a uniform, mean stress value above the endothelium does not correspond to true conditions. Finally, we show that wall thinning is slightly more prominent at the locus of high WSS in the range of physiological velocities, but under extreme velocities wall thinning intensely prevails at the locus of flow separation.
author2 Psaraki, Konstantina
author_facet Psaraki, Konstantina
Ψαράκη, Κωνσταντίνα
author Ψαράκη, Κωνσταντίνα
author_sort Ψαράκη, Κωνσταντίνα
title In-silico rheometry of endothelial cells under start-up shear experiments
title_short In-silico rheometry of endothelial cells under start-up shear experiments
title_full In-silico rheometry of endothelial cells under start-up shear experiments
title_fullStr In-silico rheometry of endothelial cells under start-up shear experiments
title_full_unstemmed In-silico rheometry of endothelial cells under start-up shear experiments
title_sort in-silico rheometry of endothelial cells under start-up shear experiments
publishDate 2022
url https://hdl.handle.net/10889/23942
work_keys_str_mv AT psarakēkōnstantina insilicorheometryofendothelialcellsunderstartupshearexperiments
AT psarakēkōnstantina apokrisētouendothēliouseaimodynamikeskaibiochēmikesmetaboles
_version_ 1771297296295657472