Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning

During breast radiotherapy treatment planning, contouring the healthy organs surrounding breast has a significant role. Unfortunately, this process, of contouring the organs at risks (OARs), can be time consuming and in many cases difficult to shape them correctly. So, this thesis is inspired to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Μακρή-Λεβίδου, Ελένη
Άλλοι συγγραφείς: Makri-Levidou, Eleni
Γλώσσα:Greek
Έκδοση: 2022
Θέματα:
Διαθέσιμο Online:https://hdl.handle.net/10889/23945
id nemertes-10889-23945
record_format dspace
spelling nemertes-10889-239452022-11-16T04:35:36Z Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning Εφαρμογές μεθόδων βαθιάς μάθησης για τη βελτιστοποίηση του σχεδιασμού οργάνων σε κίνδυνο κατά το σχεδιασμό πλάνου ακτινοθεραπείας για τον καρκίνο του μαστού Μακρή-Λεβίδου, Ελένη Makri-Levidou, Eleni Neural networks Radiotherapy Treatment planning Νευρωνικά δίκτυα Ακτινοθεραπεία Σχεδιασμός πλάνου During breast radiotherapy treatment planning, contouring the healthy organs surrounding breast has a significant role. Unfortunately, this process, of contouring the organs at risks (OARs), can be time consuming and in many cases difficult to shape them correctly. So, this thesis is inspired to solve this problem using a CNN to eliminate contouring time. Κατά τον σχεδιασμό ενός πλάνου ακτινοθεραπείας, ο σχεδιασμός των υγιών οργάνων που περιβάλλουν τον όγκο-στόχο μπορεί να γίνει αρκετά χρονοβόρο και σε πολλές περιπτώσεις δύσκολο σε ακρίβεια. Προκειμένου να ελαχιστοποιηθεί αυτός ο χρόνος, προτάθηκε να σχεδιαστεί ένα νευρωνικό δίκτυο που θα λύνει αυτό το πρόβλημα. 2022-11-15T06:49:23Z 2022-11-15T06:49:23Z 2021-12-15 https://hdl.handle.net/10889/23945 gr application/pdf
institution UPatras
collection Nemertes
language Greek
topic Neural networks
Radiotherapy
Treatment planning
Νευρωνικά δίκτυα
Ακτινοθεραπεία
Σχεδιασμός πλάνου
spellingShingle Neural networks
Radiotherapy
Treatment planning
Νευρωνικά δίκτυα
Ακτινοθεραπεία
Σχεδιασμός πλάνου
Μακρή-Λεβίδου, Ελένη
Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
description During breast radiotherapy treatment planning, contouring the healthy organs surrounding breast has a significant role. Unfortunately, this process, of contouring the organs at risks (OARs), can be time consuming and in many cases difficult to shape them correctly. So, this thesis is inspired to solve this problem using a CNN to eliminate contouring time.
author2 Makri-Levidou, Eleni
author_facet Makri-Levidou, Eleni
Μακρή-Λεβίδου, Ελένη
author Μακρή-Λεβίδου, Ελένη
author_sort Μακρή-Λεβίδου, Ελένη
title Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
title_short Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
title_full Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
title_fullStr Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
title_full_unstemmed Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
title_sort application of deep learning methods for the optimization of organs at risk (oars) delineation in breast cancer radiotherapy treatment planning
publishDate 2022
url https://hdl.handle.net/10889/23945
work_keys_str_mv AT makrēlebidouelenē applicationofdeeplearningmethodsfortheoptimizationoforgansatriskoarsdelineationinbreastcancerradiotherapytreatmentplanning
AT makrēlebidouelenē epharmogesmethodōnbathiasmathēsēsgiatēbeltistopoiēsētouschediasmouorganōnsekindynokatatoschediasmoplanouaktinotherapeiasgiatonkarkinotoumastou
_version_ 1771297203903528960