Application of deep learning methods for the optimization of organs at risk (OARs) delineation in breast cancer radiotherapy treatment planning
During breast radiotherapy treatment planning, contouring the healthy organs surrounding breast has a significant role. Unfortunately, this process, of contouring the organs at risks (OARs), can be time consuming and in many cases difficult to shape them correctly. So, this thesis is inspired to...
Main Author: | Μακρή-Λεβίδου, Ελένη |
---|---|
Other Authors: | Makri-Levidou, Eleni |
Language: | Greek |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10889/23945 |
Similar Items
-
Clinical implementation of PET/CT imaging in radiotherapy treatment planning
by: Βασιλού, Αικατερίνη
Published: (2021) -
Βελτιστοποίηση πλάνου θεραπείας στο μαστό: Field in a Field (FiF) vs. υψηλές ενέργειες φωτονίων
by: Γρηγοριάδης, Ηλίας
Published: (2015) -
Η τεχνολογική εξέλιξη στην τηλεθεραπεία του καρκίνου του προστάτη. Δοσιμετρική σύγκριση και λογισμικών πλάνων θεραπείας για τις τεχνικές 3D-CRT και VMAT
by: Μελίδης, Ηλίας
Published: (2018) -
Radiotherapy for lung cancer
by: Γιαννακίτσας, Παναγιώτης
Published: (2019) -
Optimization of internal target volumes in radiotherapy
by: Γιακουμάκης, Νικόλαος
Published: (2010)