Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin

In this study, Laser Induced Breakdown Spectroscopy (LIBS) assisted with machine learning algorithms was used for the classification of milk samples based on their animal origin (i.e., cow, goat, and sheep milk). The milk samples were studied in both liquid and solid form (the solid milk samples wer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Νάνου, Ελένη
Άλλοι συγγραφείς: Nanou, Eleni
Γλώσσα:English
Έκδοση: 2022
Θέματα:
Διαθέσιμο Online:https://hdl.handle.net/10889/23976
id nemertes-10889-23976
record_format dspace
institution UPatras
collection Nemertes
language English
topic Laser induced breakdown spectroscopy (LIBS)
Machine learning
Classification
Milk
Animal origin
Supervised and unsupervised algorithms
Φασματοσκοπία πλάσματος επαγόμενου από λέιζερ
Μηχανική μάθηση
Ταξινόμηση
Γάλα
Είδη γάλακτος
Επιβλεπόμενοι και μη επιβλεπόμενοι αλγόριθμοι
spellingShingle Laser induced breakdown spectroscopy (LIBS)
Machine learning
Classification
Milk
Animal origin
Supervised and unsupervised algorithms
Φασματοσκοπία πλάσματος επαγόμενου από λέιζερ
Μηχανική μάθηση
Ταξινόμηση
Γάλα
Είδη γάλακτος
Επιβλεπόμενοι και μη επιβλεπόμενοι αλγόριθμοι
Νάνου, Ελένη
Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
description In this study, Laser Induced Breakdown Spectroscopy (LIBS) assisted with machine learning algorithms was used for the classification of milk samples based on their animal origin (i.e., cow, goat, and sheep milk). The milk samples were studied in both liquid and solid form (the solid milk samples were obtained in powdered form via lyophilization of liquid milk). Plasma formation in liquid milk samples was studied in three ways, i.e., by focusing the laser beam on the surface of the liquid sample, on sprayed milk and on the surface of a thin filament milk flow. For these four different ways of sample handling, suitable experimental setups were constructed, calibrated and the conditions of plasma generation and LIBS spectra recording were investigated. From the comparative study of LIBS spectra obtained, it was found that the configurations for the liquid and the lyophilized milk sample were the most suitable for further experimental and classification purposes. The LIBS spectra were then analyzed using machine learning algorithms. The two algorithms applied were Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The former was used to reduce the dimensionality of the spectra, while the latter was used to classify/discriminate the spectra based on their animal origin. Moreover, the LDA algorithm was used to construct predictive models for evaluation of the algorithm’s effectiveness. The results obtained are very impressive and demonstrate the effectiveness of the LIBS technique assisted by machine learning algorithms for the classification of milk samples based on their animal, suggesting it as a very promising technique for applications in food safety and control in general.
author2 Nanou, Eleni
author_facet Nanou, Eleni
Νάνου, Ελένη
author Νάνου, Ελένη
author_sort Νάνου, Ελένη
title Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
title_short Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
title_full Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
title_fullStr Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
title_full_unstemmed Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
title_sort laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin
publishDate 2022
url https://hdl.handle.net/10889/23976
work_keys_str_mv AT nanouelenē laserinducedbreakdownspectroscopyassistedbymachinelearningalgorithmsforthediscriminationofmilksamplesbasedontheiranimalorigin
AT nanouelenē phasmatoskopiaplasmatosepagomenouapoleizerypoboēthoumenēapoalgorithmousmēchanikēsmathēsēsgiatondiachōrismodiaphorōneidōngalaktosmebasētēnzōikētousproeleusē
_version_ 1771297351107870720
spelling nemertes-10889-239762022-11-16T04:39:43Z Laser induced breakdown spectroscopy assisted by machine learning algorithms for the discrimination of milk samples based on their animal origin Φασματοσκοπία πλάσματος επαγόμενου από λέιζερ υποβοηθούμενη από αλγορίθμους μηχανικής μάθησης για τον διαχωρισμό διαφόρων ειδών γάλακτος με βάση την ζωική τους προέλευση Νάνου, Ελένη Nanou, Eleni Laser induced breakdown spectroscopy (LIBS) Machine learning Classification Milk Animal origin Supervised and unsupervised algorithms Φασματοσκοπία πλάσματος επαγόμενου από λέιζερ Μηχανική μάθηση Ταξινόμηση Γάλα Είδη γάλακτος Επιβλεπόμενοι και μη επιβλεπόμενοι αλγόριθμοι In this study, Laser Induced Breakdown Spectroscopy (LIBS) assisted with machine learning algorithms was used for the classification of milk samples based on their animal origin (i.e., cow, goat, and sheep milk). The milk samples were studied in both liquid and solid form (the solid milk samples were obtained in powdered form via lyophilization of liquid milk). Plasma formation in liquid milk samples was studied in three ways, i.e., by focusing the laser beam on the surface of the liquid sample, on sprayed milk and on the surface of a thin filament milk flow. For these four different ways of sample handling, suitable experimental setups were constructed, calibrated and the conditions of plasma generation and LIBS spectra recording were investigated. From the comparative study of LIBS spectra obtained, it was found that the configurations for the liquid and the lyophilized milk sample were the most suitable for further experimental and classification purposes. The LIBS spectra were then analyzed using machine learning algorithms. The two algorithms applied were Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The former was used to reduce the dimensionality of the spectra, while the latter was used to classify/discriminate the spectra based on their animal origin. Moreover, the LDA algorithm was used to construct predictive models for evaluation of the algorithm’s effectiveness. The results obtained are very impressive and demonstrate the effectiveness of the LIBS technique assisted by machine learning algorithms for the classification of milk samples based on their animal, suggesting it as a very promising technique for applications in food safety and control in general. Στην παρούσα εργασία, η τεχνική Φασματοσκοπία Πλάσματος Επαγόμενου από Λέιζερ (Laser Induced Breakdown Spectroscopy, LIBS), σε συνδυασμό με αλγορίθμους μηχανικής μάθησης, χρησιμοποιήθηκε για τον διαχωρισμό δειγμάτων γάλακτος διαφορετικών ζωικών προελεύσεων (δηλαδή αγελαδινό, αίγειο και πρόβειο). Τα δείγματα γάλακτος μελετήθηκαν σε υγρή και στερεή μορφή. Τα στερεά δείγματα (σκόνες) γάλακτος προέκυψαν από τη λυοφιλοποίηση των δειγμάτων υγρού γάλακτος. Η δημιουργία του πλάσματος στα υγρά δείγματα γάλακτος μελετήθηκε με τρεις τρόπους. Συγκεκριμένα, το πλάσμα δημιουργήθηκε εστιάζοντας τη δέσμη λέιζερ στην επιφάνεια ακίνητου υγρού δείγματος, σε σπρέι γάλακτος και στην επιφάνεια λεπτής στρωτής ροής γάλακτος. Για κάθε έναν από αυτούς τους τρόπους χειρισμού του δείγματος, κατασκευάστηκαν και βαθμονομήθηκαν κατάλληλες πειραματικές διατάξεις και διερευνήθηκαν οι συνθήκες δημιουργίας του πλάσματος και καταγραφής των φασμάτων LIBS. Μετά την συγκριτική μελέτη των φασμάτων LIBS, τα πειράματα συνεχίστηκαν επιλέγοντας ως καταλληλότερες μεθοδολογίες αυτές της δημιουργίας του πλάσματος στην επιφάνεια ακίνητου υγρού γάλακτος και λυοφιλοποιημένου γάλακτος. Στη συνέχεια, έγινε ανάλυση των φασμάτων χρησιμοποιώντας αλγορίθμους μηχανικής μάθησης. Οι δυο αλγόριθμοι που εφαρμόσθηκαν ήταν η Ανάλυση Κύριων Συνιστωσών (Principal Component Analysis, PCA) και η Γραμμική Διακριτική Ανάλυση (Linear Discriminant Analysis, LDA). Η πρώτη χρησιμοποιήθηκε για την μείωση των διαστάσεων των φασματικών δεδομένων, ενώ η δεύτερη για την ταξινόμηση των φασμάτων βάσει της ζωικής τους προέλευσης. Επιπλέον, ο αλγόριθμος της LDA εφαρμόσθηκε για την κατασκευή μοντέλων πρόβλεψης, με στόχο την αξιολόγηση της αποτελεσματικότητας του αλγοριθμικού μοντέλου. Τα αποτελέσματα που προέκυψαν είναι ιδιαίτερα εντυπωσιακά και υποδεικνύουν την αποτελεσματικότητα της τεχνικής LIBS υποβοηθούμενης από αλγορίθμους μηχανικής μάθησης για την ταξινόμηση δειγμάτων γάλακτος με βάση την ζωική τους προέλευση, ενώ παράλληλα, την καθιστούν ως μια πολλά υποσχόμενη τεχνική για εφαρμογές σχετιζόμενες με την ασφάλεια και πιστοποίηση της ποιότητας τροφίμων γενικότερα. 2022-11-15T10:41:45Z 2022-11-15T10:41:45Z 2021-11-26 https://hdl.handle.net/10889/23976 en application/pdf