Περίληψη: | Στην περίπτωση της αναζήτησης της βέλτιστης ακρίβειας από ένα σύστημα εξόρυξης γνώσης είναι αδύνατο ένας αλγόριθμος που βασίζεται σε μια και μόνο μέθοδο μηχανικής μάθησης να υπερτερεί σε ακρίβεια μιας ομάδας ταξινομητών. Γι’ αυτό το λόγο θα παρουσιαστούν διάφοροι προτεινόμενοι νέοι τρόποι συνδυασμού των αποφάσεων των αλγορίθμων μάθησης οι οποίοι αναπτύχθηκαν στα πλαίσια της διατριβής. Επίσης, θα παρουσιαστεί ένας προτεινόμενος υβριδικός τρόπος επιλογής των ανεξάρτητων μεταβλητών για τους αλγόριθμους μάθησης. Στη συνέχεια, θα παρουσιαστούν κάποιοι νέοι προτεινόμενοι αλγόριθμοι που αναπτύχθηκαν για την αντιμετώπιση προβλημάτων ειδικής δυσκολίας όπως η μάθηση: α) σε ανομοιογενή δεδομένα, β) σε προβλήματα πραγματικού χρόνου και γ) σε προβλήματα βαθμωτής συνάρτησης στόχου. Τέλος, περιγράφεται η δυνατότητα χρησιμοποίησης των μεθόδων μηχανικής μάθησης για εκπαιδευτικούς σκοπούς, όπως στην πρόβλεψη της επίδοσης των φοιτητών στο Ανοιχτό Πανεπιστήμιο. Στη συνέχεια, θα παρουσιαστεί και ένα εργαλείο υποστήριξης των αποφάσεων που αναπτύχθηκε για αυτό το σκοπό. Η παρουσίαση τελειώνει παραθέτοντας κάποια ανοιχτά επιστημονικά ζητήματα του χώρου.
|