Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results
The climate crisis and the environmental degradation that have emerged in recent years have made the reduction of the aviation industry’s carbon footprint, via the aerodynamic optimization of aircrafts, a very important research topic. The aim of the present work is to improve the aerodynamic perfor...
Main Author: | |
---|---|
Other Authors: | |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10889/24580 |
id |
nemertes-10889-24580 |
---|---|
record_format |
dspace |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Aerodynamics UAV Boundary layer Separation Passive control CFD Poly-Hexcore Αεροδυναμική Οριακό στρώμα Αποκόλληση Παθητικός έλεγχος |
spellingShingle |
Aerodynamics UAV Boundary layer Separation Passive control CFD Poly-Hexcore Αεροδυναμική Οριακό στρώμα Αποκόλληση Παθητικός έλεγχος Δημητρόπουλος, Δημήτριος Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
description |
The climate crisis and the environmental degradation that have emerged in recent years have made the reduction of the aviation industry’s carbon footprint, via the aerodynamic optimization of aircrafts, a very important research topic. The aim of the present work is to improve the aerodynamic performance of the ethERAS UAV wing, by delaying the separation of the boundary layer on its suction surface using dimples and bumps. These modifications are a means of passive boundary layer control, which have been mainly used in golf balls. Their function is based on introducing instabilities and turbulent fluctuations to the flow, which lead to larger momentum transfer to the boundary layer, enabling it to travel longer distances, even under the effect of large adverse pressure gradients. To determine the optimal size and position of the modifications, five configurations were designed for each modification type, resulting in a total of ten configurations. All CAD models were created using DASSAULT SYSTÈMES Catia. Afterwards, the models were prepared for the computational simulations using ANSYS Spaceclaim. All wing designs, including the original, non-modified wing, were studied at a low velocity (7m/s), to simulate landing conditions. From this case study, the best performing configuration for each modification type was chosen. The two chosen configurations and the original, non-modified wing design were studied at cruising speed (27m/s). The computational grids were created in ANSYS Fluent Meshing, using the Poly-Hexcore method of the ANSYS Mosaic Meshing technology. The computational simulations were implemented using the ANSYS Fluent pressure-based solver, the SST k-omega (SST k-ω) turbulence model and second order spatial discretization schemes. The numerical results of the 7m/s case study were validated using experimental, wind tunnel data. The two chosen configurations from the 7m/s case study and the original, non-modified wing were 3D printed on scale of 1:4 and were used for the experimental study. The comparison of the computational and experimental results showed good agreement. From the overall study it was concluded that the use of dimples aided in the enhancement of the aerodynamic performance of the wing, by improving its aerodynamic efficiency. The use of bumps proved to be inconsistent, leading to the overall degradation of the aerodynamic performance. |
author2 |
Dimitropoulos, Dimitrios |
author_facet |
Dimitropoulos, Dimitrios Δημητρόπουλος, Δημήτριος |
author |
Δημητρόπουλος, Δημήτριος |
author_sort |
Δημητρόπουλος, Δημήτριος |
title |
Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
title_short |
Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
title_full |
Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
title_fullStr |
Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
title_full_unstemmed |
Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
title_sort |
computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results |
publishDate |
2023 |
url |
https://hdl.handle.net/10889/24580 |
work_keys_str_mv |
AT dēmētropoulosdēmētrios computationalstudyoftheeffectofdimplesandbumpsonanunmannedaerialvehiclewingconfigurationoptimizationandcomparisonwithexperimentalwindtunnelresults AT dēmētropoulosdēmētrios ypologistikēmeletēepidrasēskoilōmatōnkaiexonkōmatōnsepterygamēepandrōmenouaerochēmatosbeltistopoiēsēdiamorphōsēskaisynkrisēmepeiramatikaapotelesmataaerosērangas |
_version_ |
1771297160453685248 |
spelling |
nemertes-10889-245802023-02-25T04:35:03Z Computational study of the effect of dimples and bumps on an unmanned aerial vehicle wing, configuration optimization and comparison with experimental wind tunnel results Υπολογιστική μελέτη επίδρασης κοιλωμάτων και εξογκωμάτων σε πτέρυγα μη επανδρωμένου αεροχήματος, βελτιστοποίηση διαμόρφωσης και σύγκριση με πειραματικά αποτελέσματα αεροσήραγγας Δημητρόπουλος, Δημήτριος Dimitropoulos, Dimitrios Aerodynamics UAV Boundary layer Separation Passive control CFD Poly-Hexcore Αεροδυναμική Οριακό στρώμα Αποκόλληση Παθητικός έλεγχος The climate crisis and the environmental degradation that have emerged in recent years have made the reduction of the aviation industry’s carbon footprint, via the aerodynamic optimization of aircrafts, a very important research topic. The aim of the present work is to improve the aerodynamic performance of the ethERAS UAV wing, by delaying the separation of the boundary layer on its suction surface using dimples and bumps. These modifications are a means of passive boundary layer control, which have been mainly used in golf balls. Their function is based on introducing instabilities and turbulent fluctuations to the flow, which lead to larger momentum transfer to the boundary layer, enabling it to travel longer distances, even under the effect of large adverse pressure gradients. To determine the optimal size and position of the modifications, five configurations were designed for each modification type, resulting in a total of ten configurations. All CAD models were created using DASSAULT SYSTÈMES Catia. Afterwards, the models were prepared for the computational simulations using ANSYS Spaceclaim. All wing designs, including the original, non-modified wing, were studied at a low velocity (7m/s), to simulate landing conditions. From this case study, the best performing configuration for each modification type was chosen. The two chosen configurations and the original, non-modified wing design were studied at cruising speed (27m/s). The computational grids were created in ANSYS Fluent Meshing, using the Poly-Hexcore method of the ANSYS Mosaic Meshing technology. The computational simulations were implemented using the ANSYS Fluent pressure-based solver, the SST k-omega (SST k-ω) turbulence model and second order spatial discretization schemes. The numerical results of the 7m/s case study were validated using experimental, wind tunnel data. The two chosen configurations from the 7m/s case study and the original, non-modified wing were 3D printed on scale of 1:4 and were used for the experimental study. The comparison of the computational and experimental results showed good agreement. From the overall study it was concluded that the use of dimples aided in the enhancement of the aerodynamic performance of the wing, by improving its aerodynamic efficiency. The use of bumps proved to be inconsistent, leading to the overall degradation of the aerodynamic performance. Η κλιματική κρίση και η υποβάθμιση του περιβάλλοντος που έχουν αναδειχθεί τα τελευταία χρόνια, έχουν καταστήσει την αεροδυναμική βελτιστοποίηση των αεροσκαφών, με σκοπό την μείωση του αποτυπώματος άνθρακα της αεροβιομηχανίας, ένα πολύ σημαντικό ερευνητικό θέμα. Σκοπός της παρούσας εργασίας είναι η βελτίωση της αεροδυναμικής επίδοσης της πτέρυγας του UAV ethERAS, καθυστερώντας την αποκόλληση του οριακού στρώματος από την άνω επιφάνεια της, χρησιμοποιώντας κοιλώματα και εξογκώματα. Αυτές οι τροποποιήσεις αποτελούν ένα μέσο παθητικού ελέγχου του οριακού στρώματος, που έχει χρησιμοποιηθεί κυρίως στις μπάλες του γκολφ. Η λειτουργία τους στηρίζεται στην δημιουργία ασταθειών και τυρβωδών διαταραχών, οι οποίες εντείνουν την μεταφορά ορμής προς το οριακό στρώμα, καθιστώντας το ικανό να διανύσει μεγαλύτερες αποστάσεις, ακόμη και υπό την επίδραση μεγάλων ανήφορων πίεσης. Για να προσδιορισθεί η επίδραση του μεγέθους και της τοποθεσίας των τροποποιήσεων, σχεδιάσθηκαν πέντε διαφορετικές διαμορφώσεις για κάθε τύπο τροποποίησης, καταλήγοντας σε σύνολο δέκα διαμορφώσεων. Όλα τα CAD μοντέλα δημιουργήθηκαν στο λογισμικό Catia της DASSAULT SYSTÈMES. Ακολούθως, τα μοντέλα προετοιμάστηκαν για τις υπολογιστικές προσομοιώσεις χρησιμοποιώντας το λογισμικό ANSYS Spaceclaim. Όλοι οι σχεδιασμοί, συμπεριλαμβανομένης της αρχικής, μη τροποποιημένης πτέρυγας, μελετήθηκαν σε χαμηλή ταχύτητα (7m/s), για να προσομοιωθούν οι συνθήκες προσγείωσης. Από την συγκεκριμένη μελέτη επιλέχθηκε η καλύτερη διαμόρφωση για κάθε τύπο τροποποίησης. Οι επιλεγμένες διαμορφώσεις και η αρχική, μη τροποποιημένη πτέρυγα μελετήθηκαν σε ταχύτητα πτήσης (27m/s). Τα υπολογιστικά πλέγματα κατασκευάστηκαν στο λογισμικό ANSYS Fluent Meshing, χρησιμοποιώντας την μέθοδο Poly-Hexcore της τεχνολογίας ANSYS Mosaic Meshing. Oι υπολογιστικές προσομοιώσεις διεξάχθηκαν χρησιμοποιώντας τον pressure-based solver του ANSYS Fluent, το μοντέλο τύρβης SST k-ω και χωρική διακριτοποίηση 2ης τάξης. Τα υπολογιστικά αποτελέσματα για τα 7m/s συγκρίθηκαν με πειραματικά δεδομένα. Για την πειραματική μελέτη χρησιμοποιήθηκαν τα υπό κλίμακα 1:4, 3D printed μοντέλα των επιλεγμένων διαμορφώσεων από την μελέτη για τα 7m/s και η αρχική, μη τροποποιημένη πτέρυγα. Η σύγκριση έδειξε καλή συμφωνία μεταξύ των υπολογιστικών και των πειραματικών αποτελεσμάτων. Από την συνολική μελέτη διαπιστώθηκε πως η χρήση κοιλωμάτων συνέβαλε στην ενίσχυση της αεροδυναμικής επίδοσης της πτέρυγας, αυξάνοντας την αεροδυναμική απόδοση. Η χρήση προεξοχών αποδείχθηκε ασταθής, προκαλώντας την συνολική μείωση της αεροδυναμικής επίδοσης. 2023-02-24T11:39:19Z 2023-02-24T11:39:19Z 2023-03-03 https://hdl.handle.net/10889/24580 en application/pdf |