Continuous user authentication on smartphone devices based on intelligent behavioral biometrics
The wealth of provided services and personal information that smartphones contain is consistently growing. This fact leads to the demand for secure and usable authentication techniques and for constantly protecting privacy. Continuous Authentication is the process of constantly and unobtrusively ver...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Γλώσσα: | English |
Έκδοση: |
2023
|
Θέματα: | |
Διαθέσιμο Online: | https://hdl.handle.net/10889/24638 |
id |
nemertes-10889-24638 |
---|---|
record_format |
dspace |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Continuous authentication Behavioral biometrics Usable security Machine learning Smartphone authentication Βιομετρικά χαρακτηριστικά Μηχανική μάθηση Ταυτοποίηση |
spellingShingle |
Continuous authentication Behavioral biometrics Usable security Machine learning Smartphone authentication Βιομετρικά χαρακτηριστικά Μηχανική μάθηση Ταυτοποίηση Ορφανού, Έλλη Άννα Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
description |
The wealth of provided services and personal information that smartphones contain is consistently growing. This fact leads to the demand for secure and usable authentication techniques and for constantly protecting privacy. Continuous Authentication is the process of constantly and unobtrusively verifying the identity of a user during their interaction with a smartphone device, as opposed to a single entrypoint authentication. Behavioral biometrics is a security technology that uses patterns in human activities, such as typing or swiping on a device, to authenticate a user’s identity. Smartphone’s integrated sensors are capable of detecting these distinctive behavioral traits of users, based on their individual habits, gestures, and preferences in using their smartphones.
In this work, the appliance of Behavioral Biometrics in order to provide Continuous Authentication on smartphones is investigated. An extensive review of the related literature has been conducted and Behavioral Biometric features are divided in six categories: touch gestures, micromotions, keystroke dynamics, walking gait, behavior profiling and fusion of the above. Conclusions were made regarding the robustness of each modality, in order to have a deep understanding of the field and make decisions about the framework proposed.
A Continuous Authentication mechanism based on Micromotions is proposed, including a data collector smartphone service that captures measurements of accelerometer, gyroscope and magnetometer smartphone integrated sensors. Data was collected from 12 participants in two physical activities: sitting and walking, in order to simulate a real world environment. After the features preprocessing 60 attributes were extracted and classified using Weka software, employing six machine learning classifiers: Random Forest, SVM, KNN, Multilayer Perceptron, Bayes Network and Naive Bayes. Overall, a maximum accuracy of 96.89% was obtained using Random Forest algorithm for 12 users multi class classification. Moreover, the appliance of the proposed mechanisms in device sharing environments like families was examined, leading to very promising results with an accuracy rate of 99.18% for a 4 users dataset, using only accelerometer and magnetometer sensors. Experimental results show the feasibility of the approach and can provide a foundation for the development of a future real time authentication system |
author2 |
Orfanou, Elli Anna |
author_facet |
Orfanou, Elli Anna Ορφανού, Έλλη Άννα |
author |
Ορφανού, Έλλη Άννα |
author_sort |
Ορφανού, Έλλη Άννα |
title |
Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
title_short |
Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
title_full |
Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
title_fullStr |
Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
title_full_unstemmed |
Continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
title_sort |
continuous user authentication on smartphone devices based on intelligent behavioral biometrics |
publishDate |
2023 |
url |
https://hdl.handle.net/10889/24638 |
work_keys_str_mv |
AT orphanouellēanna continuoususerauthenticationonsmartphonedevicesbasedonintelligentbehavioralbiometrics AT orphanouellēanna anaptyxēkaiaxiologēsēmēchanismousynechoustautopoiēsēschrēstēsediadrastikeskinētessyskeuesmealgorithmousmēchanikēsmathēsēs |
_version_ |
1771297149934370816 |
spelling |
nemertes-10889-246382023-03-03T04:35:25Z Continuous user authentication on smartphone devices based on intelligent behavioral biometrics Ανάπτυξη και αξιολόγηση μηχανισμού συνεχούς ταυτοποίησης χρήστη σε διαδραστικές κινητές συσκευές με αλγορίθμους μηχανικής μάθησης Ορφανού, Έλλη Άννα Orfanou, Elli Anna Continuous authentication Behavioral biometrics Usable security Machine learning Smartphone authentication Βιομετρικά χαρακτηριστικά Μηχανική μάθηση Ταυτοποίηση The wealth of provided services and personal information that smartphones contain is consistently growing. This fact leads to the demand for secure and usable authentication techniques and for constantly protecting privacy. Continuous Authentication is the process of constantly and unobtrusively verifying the identity of a user during their interaction with a smartphone device, as opposed to a single entrypoint authentication. Behavioral biometrics is a security technology that uses patterns in human activities, such as typing or swiping on a device, to authenticate a user’s identity. Smartphone’s integrated sensors are capable of detecting these distinctive behavioral traits of users, based on their individual habits, gestures, and preferences in using their smartphones. In this work, the appliance of Behavioral Biometrics in order to provide Continuous Authentication on smartphones is investigated. An extensive review of the related literature has been conducted and Behavioral Biometric features are divided in six categories: touch gestures, micromotions, keystroke dynamics, walking gait, behavior profiling and fusion of the above. Conclusions were made regarding the robustness of each modality, in order to have a deep understanding of the field and make decisions about the framework proposed. A Continuous Authentication mechanism based on Micromotions is proposed, including a data collector smartphone service that captures measurements of accelerometer, gyroscope and magnetometer smartphone integrated sensors. Data was collected from 12 participants in two physical activities: sitting and walking, in order to simulate a real world environment. After the features preprocessing 60 attributes were extracted and classified using Weka software, employing six machine learning classifiers: Random Forest, SVM, KNN, Multilayer Perceptron, Bayes Network and Naive Bayes. Overall, a maximum accuracy of 96.89% was obtained using Random Forest algorithm for 12 users multi class classification. Moreover, the appliance of the proposed mechanisms in device sharing environments like families was examined, leading to very promising results with an accuracy rate of 99.18% for a 4 users dataset, using only accelerometer and magnetometer sensors. Experimental results show the feasibility of the approach and can provide a foundation for the development of a future real time authentication system Η παρούσα διπλωματική εργασία πραγματεύεται τη συνεχή ταυτοποίηση χρήστη σε περιβάλλοντα διαδραστικών κινητών συσκευών, βασισμένη σε συμπεριφορικά βιομετρικά χαρακτηριστικά του χρήστη, με τη χρήση μηχανικής μάθησης. Συγκεκριμένα, γίνεται μία βιβλιογραφική ανασκόπηση σε πάνω από 80 επιστημονικά άρθρα προκειμένου να καταγραφούν οι τεχνικές συλλογής δεδομένων, τα βιομετρικά χαρακτηριστικά και οι αλγόριθμοι μηχανικής μάθησης που χρησιμοποιούνται, καθώς και η απόδοσή τους αναφορικά με την ακρίβεια ταυτοποίησης και άλλες μετρικές. Επιπλέον, εξάγονται κάποια στατιστικά συμπεράσματα αναφορικά με τη έρευνα στο συγκεκριμένο τομέα. Στη συνέχεια προτείνεται ένα σύστημα συνεχούς ταυτοποίσης, με τη χρήση των ενσωματωμένων αισθητήρων κίνησης που διαθέτουν οι σύγχρονες κινητές συσκευές και ειδικότερα, δεδομένα καταγράφηκαν από το επιταχυνσιόμετρο, το γυροσκόπιο και το μαγνητόμετρο. Ο μηχανισμός ταυτοποίησης εστιάζει στο πρόβλημα των κοινόχρητων διαδραστικών συσκευών αλλά και στην περίπτωση κοινής χρήσης κωδικών σε προσωπική κινητή συσκευή. Στα πλαίσια της εργασίας, συλλέχθηκαν δεδομένα από 12 χρήστες σε διαφορετικές συνθήκες και με τη χρήση του λογισμικού Weka αξιολογήθηκαν με τη χρήση διαφορετικών αλγορίθμων. Η μέγιστη ακρίβεια ταυτοποίησης που επιτεύχθηκε ήταν ίση με 96.89% με τη χρήση του αλγόριθμου Random Forest . 2023-03-02T11:25:43Z 2023-03-02T11:25:43Z 2023-03-01 https://hdl.handle.net/10889/24638 en Attribution 3.0 United States http://creativecommons.org/licenses/by/3.0/us/ application/pdf |