Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας

Θεωρούμε μια ακολουθία από n ανεξάρτητες τυχαίες μεταβλητές Bernoulli, διατεταγμένες σε κύκλο, με πιθανότητα επιτυχίας της pi, και πιθανότητα αποτυχίας qi. Στην εργασία αυτή αρχικά μελετάται η τυχαία μεταβλητή Nn,kC η οποία παριστάνει το πλήθος των μη επικαλυπτόμενων ροών επιτυχιών μήκους k σε...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Μαστρογιαννοπούλου, Ελένη
Άλλοι συγγραφείς: Μακρή, Ευφροσύνη
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2009
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/2476
id nemertes-10889-2476
record_format dspace
spelling nemertes-10889-24762022-09-05T05:38:35Z Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας Μαστρογιαννοπούλου, Ελένη Μακρή, Ευφροσύνη Μακρή, Ευφροσύνη Αλεβίζος, Φίλιππος Τσάντας, Νικόλαος Mastrogiannopoulou, Eleni Αξιοπιστία Σύστημα αποτυχίας Ροή επιτυχιών Reliability F system Success runs 519.5 Θεωρούμε μια ακολουθία από n ανεξάρτητες τυχαίες μεταβλητές Bernoulli, διατεταγμένες σε κύκλο, με πιθανότητα επιτυχίας της pi, και πιθανότητα αποτυχίας qi. Στην εργασία αυτή αρχικά μελετάται η τυχαία μεταβλητή Nn,kC η οποία παριστάνει το πλήθος των μη επικαλυπτόμενων ροών επιτυχιών μήκους k σε n ανεξάρτητες δοκιμές Bernoulli διατεταγμένες σε κύκλο. Προσδιορίζεται η κατανομή της Nn,kC είτε μέσω της μεθόδου εμβάπτισης της τυχαίας μεταβλητής σε Μαρκοβιανή αλυσίδα (Fu, Koutras, 1994 και Koutras, Papadopoulos, Papastavridis, 1995), είτε μέσω συνδυαστικής ανάλυσης (Charalambides, 1994, Makri, Philippou, 1994 και Makri, Philippou, Psillakis, 2007). Κυκλικό συνεχόμενο k -από-τα-n σύστημα αποτυχίας είναι ένα σύστημα n συνιστωσών, διατεταγμένων σε κύκλο, το οποίο αποτυγχάνει αν και μόνο αν αποτύχουν τουλάχιστον k συνεχόμενες συνιστώσες του. Κυκλικό m-συνεχόμενο k-από-τα-n σύστημα αποτυχίας είναι ένα σύστημα n συνιστωσών, διατεταγμένων σε κύκλο, το οποίο αποτυγχάνει αν και μόνο αν υπάρχουν τουλάχιστον m μη επικαλυπτόμενες ροές από k συνεχόμενες αποτυχημένες συνιστώσες. Μελετάται η σχέση της αξιοπιστίας των παραπάνω συστημάτων με την κατανομή της τυχαίας μεταβλητής Nn,kC και αναπτύσονται μέθοδοι που έχουν δοθεί για τον προσδιορισμό της αξιοπιστίας τους. Δίνονται ακριβείς εκφράσεις της αξιοπιστίας αυτών των συστημάτων μέσω διωνυμικών συντελεστών, πολυωνυμικών συντελεστών, αναδρομικών σχέσεων και μέσω της μεθόδου εμβάπτισης τυχαίας μεταβλητής σε Μαρκοβιανή αλυσίδα. Η μελέτη γίνεται για ανεξάρτητες τυχαίες μεταβλητές Bernoulli όχι κατ’ανάγκην ισόνομες. Τέλος, παρουσιάζονται αριθμητικά παραδείγματα για την διευκρίνιση των μεθόδων που αναπτύχθηκαν παραπάνω. Consider a sequence of n independent Bernoulli trials, arranged on a circle with success probability pi. The random variable Nn,kC denoting the number of non overlapping success runs of length k in n independent Bernoulli trials arranged on a circle is studied. The exact distribution of Nn,kC is given, via combinatorial analysis (Charalambides 1994, Makri, Philippou 1994 and Makri, Philippou, Psillakis 2007) and using the Markov chain imbedding technique (Fu, Koutras 1994 and Koutras, Papadopoulos, Papastavridis 1995). Derman, Lieberman and Ross (1982) introduced and studied a circular consecutive k-out-of-n: F system. Such a system consists of n components ordered on a circle and fails if and only if at least k consecutive components fail. A circular m consecutive k-out-of-n: F system consists of n components ordered on a circle and fails if and only if there are at least m non overlapping runs, each of k consecutive failed components. We study the reliability of the above systems via to the distribution of the random variable Nn,kC. Exact formulae for the reliability are given by means of binomial and multinomial coefficients, and using the Markov chain imbedding technique. The study is accomplished for systems with independent components not necessarily with equal probabilities. Numerical examples are given for comparison and to illustrate the theoretical results. 2009-12-22T10:14:17Z 2009-12-22T10:14:17Z 2009-09-18 2009-12-22T10:14:17Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/2476 gr Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf
institution UPatras
collection Nemertes
language Greek
topic Αξιοπιστία
Σύστημα αποτυχίας
Ροή επιτυχιών
Reliability
F system
Success runs
519.5
spellingShingle Αξιοπιστία
Σύστημα αποτυχίας
Ροή επιτυχιών
Reliability
F system
Success runs
519.5
Μαστρογιαννοπούλου, Ελένη
Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
description Θεωρούμε μια ακολουθία από n ανεξάρτητες τυχαίες μεταβλητές Bernoulli, διατεταγμένες σε κύκλο, με πιθανότητα επιτυχίας της pi, και πιθανότητα αποτυχίας qi. Στην εργασία αυτή αρχικά μελετάται η τυχαία μεταβλητή Nn,kC η οποία παριστάνει το πλήθος των μη επικαλυπτόμενων ροών επιτυχιών μήκους k σε n ανεξάρτητες δοκιμές Bernoulli διατεταγμένες σε κύκλο. Προσδιορίζεται η κατανομή της Nn,kC είτε μέσω της μεθόδου εμβάπτισης της τυχαίας μεταβλητής σε Μαρκοβιανή αλυσίδα (Fu, Koutras, 1994 και Koutras, Papadopoulos, Papastavridis, 1995), είτε μέσω συνδυαστικής ανάλυσης (Charalambides, 1994, Makri, Philippou, 1994 και Makri, Philippou, Psillakis, 2007). Κυκλικό συνεχόμενο k -από-τα-n σύστημα αποτυχίας είναι ένα σύστημα n συνιστωσών, διατεταγμένων σε κύκλο, το οποίο αποτυγχάνει αν και μόνο αν αποτύχουν τουλάχιστον k συνεχόμενες συνιστώσες του. Κυκλικό m-συνεχόμενο k-από-τα-n σύστημα αποτυχίας είναι ένα σύστημα n συνιστωσών, διατεταγμένων σε κύκλο, το οποίο αποτυγχάνει αν και μόνο αν υπάρχουν τουλάχιστον m μη επικαλυπτόμενες ροές από k συνεχόμενες αποτυχημένες συνιστώσες. Μελετάται η σχέση της αξιοπιστίας των παραπάνω συστημάτων με την κατανομή της τυχαίας μεταβλητής Nn,kC και αναπτύσονται μέθοδοι που έχουν δοθεί για τον προσδιορισμό της αξιοπιστίας τους. Δίνονται ακριβείς εκφράσεις της αξιοπιστίας αυτών των συστημάτων μέσω διωνυμικών συντελεστών, πολυωνυμικών συντελεστών, αναδρομικών σχέσεων και μέσω της μεθόδου εμβάπτισης τυχαίας μεταβλητής σε Μαρκοβιανή αλυσίδα. Η μελέτη γίνεται για ανεξάρτητες τυχαίες μεταβλητές Bernoulli όχι κατ’ανάγκην ισόνομες. Τέλος, παρουσιάζονται αριθμητικά παραδείγματα για την διευκρίνιση των μεθόδων που αναπτύχθηκαν παραπάνω.
author2 Μακρή, Ευφροσύνη
author_facet Μακρή, Ευφροσύνη
Μαστρογιαννοπούλου, Ελένη
format Thesis
author Μαστρογιαννοπούλου, Ελένη
author_sort Μαστρογιαννοπούλου, Ελένη
title Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
title_short Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
title_full Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
title_fullStr Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
title_full_unstemmed Αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
title_sort αριθμός ροών επιτυχιών και αξιοπιστία κυκλικών συνεχόμενων συστημάτων αποτυχίας
publishDate 2009
url http://nemertes.lis.upatras.gr/jspui/handle/10889/2476
work_keys_str_mv AT mastrogiannopoulouelenē arithmosroōnepitychiōnkaiaxiopistiakyklikōnsynechomenōnsystēmatōnapotychias
_version_ 1771297161721413632