Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables
Problems under uncertainty conditions appear frequently in practice. The use of classical interval analysis constitutes an interesting tool for the study of such problems with the uncertain variables assumed to be interval variables. Ben-Haim's info-gap (or information-gap) decision theory (IGD...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Technical Report |
Γλώσσα: | English |
Έκδοση: |
2023
|
Θέματα: | |
Διαθέσιμο Online: | https://hdl.handle.net/10889/25059 |
id |
nemertes-10889-25059 |
---|---|
record_format |
dspace |
spelling |
nemertes-10889-250592023-06-14T03:58:48Z Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables Εφαρμογή της μεθόδου της απαλοιφής ποσοδεικτών στη θεωρία αποφάσεων info-gap (IGDT) του Ben-Haim υπό την παρουσία τόσο αβέβαιων μεταβλητών που σχετίζονται με ορίζοντα αβεβαιότητας όσο και συνηθισμένων αβέβαιων μεταβλητών διαστήματος Ioakimidis, Nikolaos Ιωακειμίδης, Νικόλαος Uncertainty Info-gap Information-gap Ben-Haim's IGDT Fractional-error model Interval variables Uncertainty parameter Horizon of uncertainty Rectangle Rectangular cuboid Areas Volumes Columns Buckling loads Springs Equivalent spring constants Resistors Equivalent resistances Quantified formulae Quantifier elimination Quantifier-free formulae Problems under uncertainty conditions appear frequently in practice. The use of classical interval analysis constitutes an interesting tool for the study of such problems with the uncertain variables assumed to be interval variables. Ben-Haim's info-gap (or information-gap) decision theory (IGDT) constitutes an interesting method for the study of such problems. The determination of the maximum value of the uncertainty parameter (or horizon of uncertainty) for the uncertain variables so that the performance requirement(s) is (are) satisfied is of primary importance in the IGDT. On the other hand, the method of quantifier elimination in computer algebra permits the transformation of quantified formulae to equivalent formulae, but free from the quantified variables. Here the method of quantifier elimination is applied to the mixed case with two or three uncertain variables where one (or two) of these variables is (are) ordinary interval variable(s) whereas the remaining uncertain variable(s) satisfies (satisfy) the popular fractional-error model of uncertainty in the IGDT. Therefore, here the horizon of uncertainty concerns only the latter variable(s). The present method is illustrated in the following five simple applications: (i) the problem of the area of a rectangle, (ii) the problem of the volume of a rectangular cuboid, (iii) the problem of the buckling load of a fixed–free column, (iv) the problem of the equivalent spring constants of two elastic springs connected in series and in parallel and (v) the similar problem for the resistances of three resistors. 2023-06-13T05:38:38Z 2023-06-13T05:38:38Z 2023-06-13 Technical Report https://hdl.handle.net/10889/25059 en application/pdf |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Uncertainty Info-gap Information-gap Ben-Haim's IGDT Fractional-error model Interval variables Uncertainty parameter Horizon of uncertainty Rectangle Rectangular cuboid Areas Volumes Columns Buckling loads Springs Equivalent spring constants Resistors Equivalent resistances Quantified formulae Quantifier elimination Quantifier-free formulae |
spellingShingle |
Uncertainty Info-gap Information-gap Ben-Haim's IGDT Fractional-error model Interval variables Uncertainty parameter Horizon of uncertainty Rectangle Rectangular cuboid Areas Volumes Columns Buckling loads Springs Equivalent spring constants Resistors Equivalent resistances Quantified formulae Quantifier elimination Quantifier-free formulae Ioakimidis, Nikolaos Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
description |
Problems under uncertainty conditions appear frequently in practice. The use of classical interval analysis constitutes an interesting tool for the study of such problems with the uncertain variables assumed to be interval variables. Ben-Haim's info-gap (or information-gap) decision theory (IGDT) constitutes an interesting method for the study of such problems. The determination of the maximum value of the uncertainty parameter (or horizon of uncertainty) for the uncertain variables so that the performance requirement(s) is (are) satisfied is of primary importance in the IGDT. On the other hand, the method of quantifier elimination in computer algebra permits the transformation of quantified formulae to equivalent formulae, but free from the quantified variables. Here the method of quantifier elimination is applied to the mixed case with two or three uncertain variables where one (or two) of these variables is (are) ordinary interval variable(s) whereas the remaining uncertain variable(s) satisfies (satisfy) the popular fractional-error model of uncertainty in the IGDT. Therefore, here the horizon of uncertainty concerns only the latter variable(s). The present method is illustrated in the following five simple applications: (i) the problem of the area of a rectangle, (ii) the problem of the volume of a rectangular cuboid, (iii) the problem of the buckling load of a fixed–free column, (iv) the problem of the equivalent spring constants of two elastic springs connected in series and in parallel and (v) the similar problem for the resistances of three resistors. |
author2 |
Ιωακειμίδης, Νικόλαος |
author_facet |
Ιωακειμίδης, Νικόλαος Ioakimidis, Nikolaos |
format |
Technical Report |
author |
Ioakimidis, Nikolaos |
author_sort |
Ioakimidis, Nikolaos |
title |
Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
title_short |
Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
title_full |
Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
title_fullStr |
Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
title_full_unstemmed |
Application of the method of quantifier elimination to Ben-Haim's info-gap decision theory (IGDT) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
title_sort |
application of the method of quantifier elimination to ben-haim's info-gap decision theory (igdt) under the presence of both horizon-of-uncertainty-related and ordinary interval uncertain variables |
publishDate |
2023 |
url |
https://hdl.handle.net/10889/25059 |
work_keys_str_mv |
AT ioakimidisnikolaos applicationofthemethodofquantifiereliminationtobenhaimsinfogapdecisiontheoryigdtunderthepresenceofbothhorizonofuncertaintyrelatedandordinaryintervaluncertainvariables AT ioakimidisnikolaos epharmogētēsmethodoutēsapaloiphēsposodeiktōnstētheōriaapophaseōninfogapigdttoubenhaimypotēnparousiatosoabebaiōnmetablētōnpouschetizontaimeorizontaabebaiotētasosokaisynēthismenōnabebaiōnmetablētōndiastēmatos |
_version_ |
1771297333073412096 |