Ανάπτυξη νέων τεχνικών υψηλών θερμοκρασιών με χρήση laser υπέρυθρου (CO2) γιά τη μελέτη με φασματοσκοπία Raman δικτυακών δομών ανόργανων υλικών

Στα πλαίσια της παρούσας διδακτορικής διατριβής έγινε προσπάθεια να μελετηθούν μέσω φασματοσκοπίας Raman τα δομικά και τα δυναμικά χαρακτηριστικά διαφόρων ανόργανων υγρών και γυαλιών σε μεγάλο θερμοκρασιακό εύρος. Αναπτύχθηκαν μέθοδοι, με τις οποίες επιτεύχθηκε η φασματοσκοπική μελέτη υλικών υψηλής...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Καλαμπούνιας, Άγγελος
Άλλοι συγγραφείς: Παπαθεοδώρου, Γ. Ν.
Γλώσσα:Greek
Έκδοση: 2007
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/256
Περιγραφή
Περίληψη:Στα πλαίσια της παρούσας διδακτορικής διατριβής έγινε προσπάθεια να μελετηθούν μέσω φασματοσκοπίας Raman τα δομικά και τα δυναμικά χαρακτηριστικά διαφόρων ανόργανων υγρών και γυαλιών σε μεγάλο θερμοκρασιακό εύρος. Αναπτύχθηκαν μέθοδοι, με τις οποίες επιτεύχθηκε η φασματοσκοπική μελέτη υλικών υψηλής καθαρότητας σε θερμοκρασίες έως και 2000oC. Τα φασματοσκοπικά δεδομένα Raman διαφόρων γυαλιών και υγρών περιορίζονται σε θερμοκρασίες έως 1000oC λόγω διαφόρων πειραματικών δυσκολιών που παρουσιάζονται σε μετρήσεις δονητικής φασματοσκοπίας σε υψηλές θερμοκρασίες. Η κυριότερη δυσκολία είναι η πολύ ισχυρή ακτινοβολία μέλανος σώματος, η οποία υπερκαλύπτει το ασθενές σήμα Raman μην επιτρέποντας από κάποιο σημείο και πέρα τη λήψη των φασμάτων. Προκειμένου να ξεπεραστούν οι πειραματικές δυσκολίες αναπτύχθηκε στα πλαίσια της παρούσας διδακτορικής διατριβής ένα σύστημα Raman που συνδυάζει τις «τεχνικές ελλείψεως δοχείου» (“containerless techniques”) και τη χρήση ενός laser υπερύθρου (CO2-laser) ως θερμαντική πηγή, επιτρέποντας τη λήψη φασμάτων για πρώτη φορά σε θερμοκρασίες έως και 2000oC. Οι «τεχνικές ελλείψεως δοχείου» χωρίζονται σε δύο κατηγορίες, την «τεχνική αιώρησης» του δείγματος (“levitation technique”) όπου το υλικό αιωρείται υπό μορφή υγρής σταγόνας σε κατάλληλης γεωμετρίας ακροφύσιο με χρήση προωθητικού αερίου και την «τεχνική αυτοϋποστήριξης» του δείγματος (“self-support technique”) όπου το υγρό υποστηρίζεται από τη στερεά φάση του ίδιου υλικού. Το βασικότερο πλεονεκτήμα του συνδυασμού της φασματοσκοπίας Raman, των «τεχνικών ελλείψεως δοχείου» και της θέρμανσης με χρήση ενός laser υπερύθρου είναι ο σημαντικός περιορισμός της θερμικής εκπομπής, αφού απουσιάζει η ισχυρή θερμική εκπομπή του φούρνου, δίνοντας τη δυνατότητα μελέτης υψηλότηκτων υλικών αποφεύγοντας μολύνσεις, ετερογενή πυρηνοποίηση, αντιδράσεις μεταξύ υλικών και δοχείων σε υψηλές θερμοκρασίες επιτρέποντας την εφαρμογή της επιθυμητής ατμόσφαιρας στο υπό εξέταση υλικό. Μελετήθηκαν με δονητική φασματοσκοπία Raman μη-οξυγονούχες (ZnCl2, ZnBr2, xZnCl2-(1-x)AlCl3) και οξυγονούχες (SiO2, K2Si4O9, xCaO-(1-x)SiO2, xCaO-(1-x)Al2O3) ενώσεις με ενδογενείς πειραματικές δυσκολίες, όπως πολύ υψηλά σημεία τήξης (~2000oC για την περίπτωση των οξειδίων), υψηλή υγροσκοπικότητα, μεγάλες τάσεις ατμών κ.α. ξεπερνώντας τους διαφόρους πειραματικούς περιορισμούς και πραγματοποιήθηκε προσπάθεια σύνδεσης ανάμεσα στο δομικό και δυναμικό χαρακτήρα τους λαμβάνοντας φάσματα Raman σε θερμοκρασιακό εύρος που περιλαμβάνει την κρυσταλλική, υαλώδη, υπέρψυκτη και υγρή κατάσταση. Από τις πληροφορίες που λαμβάνονται για τα τοπικά πολύεδρα συναρμογής σε μικρής κλίμακας τάξη μέσω φασματοσκοπίας Raman γίνεται προσπάθεια να διασαφηνιστεί ο ρόλος των «τροποποιητών του δικτύου» (“network modifiers”) κατά την εισαγωγή τους σε υλικά με πλήρως πολυμερισμένες, τρισδιάστατες, δικτυακές τετραεδρικές δομές (“network formers”). Η δομή σε ενδιάμεσης κλίμακας τάξη (φάσμα Raman χαμηλών συχνοτήτων), η κορυφή Boson, η ημιελαστική κορυφή και χαρακτηριστικά όπως ο εύθραυστος/ισχυρός χαρακτήρας και η μη-εκθετική/εκθετική συμπεριφορά των υπό μελέτη υλικών προσδιορίστηκαν συναρτήσει της θερμοκρασίας και τα αποτελέσματα αναλύονται στα πλαίσια θεωρητικών και φαινομενολογικών μοντέλων που αφορούν την υαλώδη μετάβαση.