Περίληψη: | Σε αυτήν την εργασία μελετήθηκε η συμπεριφορά της ηλεκτρικής ειδικής αγωγιμότητας συνεχούς, δειγμάτων πολυπυρρόλης και νανοσυνθέτων πολυπυρρόλης/5% w/w TiO2, συναρτήσει της θερμοκρασίας.
Οι μετρήσεις πραγματοποιήθηκαν τόσο σε μόλις παρασκευασθέντα δείγματα, καθώς και στα ίδια δείγματα μετά από συγκεκριμένη παραμονή τους σε θερμοκρασία καταπόνησης για διαφορετικά χρονικά διαστήματα. Οι θερμοκρασίες καταπόνησης ήταν 100, 300 και 380Κ. Τα χρονικά διαστήματα στα οποία παρέμεναν τα δείγματα στη συγκεκριμένη θερμοκρασία καταπόνησης κάθε φορά, έβαιναν αυξανόμενα από 0 μέχρι 30 ώρες περίπου. Η θερμική καταπόνηση των δειγμάτων γινόταν σε ατμόσφαιρα δωματίου και σε αδρανή ατμόσφαιρα ηλίου.
Η επιφάνεια των δειγμάτων μελετήθηκε με μικροφωτογραφίες SEM πριν και μετά την θερμική καταπόνηση.
Τόσο για την καθαρή πολυπυρρόλη, όσο και για τα νανοσύνθετα πολυπυρρόλης/5% w/w TiO2 η αγωγιμότητα ακολουθεί την σχέση , η οποία ισχύει για την περίπτωση υλικού με δομή κοκκώδους μετάλλου. Στη δομή αυτή, αγώγιμες νησίδες πολυμερούς κατανέμονται τυχαία μέσα σε μονωτικό υλικό. Η παραπάνω σχέση ισχύει όταν οι μονωτικοί φραγμοί είναι αρκετά στενοί, έτσι ώστε οι φορείς αγωγιμότητας, λόγω φαινομένου σήραγγος, να περνούν από περιοχές μικρής επιφάνειας, εκεί όπου οι κόκκοι πλησιάζουν πολύ μεταξύ τους. Λόγω του μικρού μεγέθους αυτών των περιοχών διέλευσης, η συγκέντρωση των φορέων εκατέρωθεν του μονωτικού φραγμού εμφανίζει έντονες θερμικές διακυμάνσεις συνοδευόμενες από αντίστοιχες διακυμάνσεις της τάσης, οι οποίες τελικά καθορίζουν την διέλευση των φορέων (μοντέλο FIT – Fluctuation Induced Tunneling). Με βάση το μοντέλο FIT υπολογίστηκαν οι χαρακτηριστικές παράμετροι σ0, T1 και T0. Η παράμετρος σ0 αποτελεί μέτρο της αγωγιμότητας στο εσωτερικό των αγώγιμων νησίδων, η T1 εκφράζει το ύψος του φραγμού της δυναμικής ενέργειας, τον οποίο πρέπει να διασχίσει ο φορέας, ενώ το T0 σε συνδυασμό με την παράμετρο T1 επιτρέπουν τον υπολογισμό της απόστασης s μεταξύ των αγώγιμων νησίδων.
Η κλίση των καμπύλων είναι μικρότερη (περίπου η μισή) για τα νανοσύνθετα από ότι για τα δείγματα καθαρής πολυπυρρόλης, τόσο σε ατμόσφαιρα δωματίου, όσο και σε αδρανή ατμόσφαιρα He. Αυτό ερμηνεύεται από το γεγονός ότι, η TiO2 έχει μεγαλύτερο ενεργειακό χάσμα (3.2eV) από την πολυπυρρόλη (2.5eV), οπότε η θερμική διέγερση των φορέων είναι πιο δύσκολη στα δείγματα νανοσυνθέτων.
Με τη δομή κοκκώδους μετάλλου συμφωνεί και ο νόμος της θερμικής γήρανσης, , από τον οποίο προκύπτει γραμμικότητα της . Από την κλίση των ευθειών προκύπτει ότι η παρουσία της TiO2 επιβραδύνει τη γήρανση μειώνοντας την κινητικότητα των αλυσίδων του πολυμερούς.
Από τις μικροφωτογραφίες SEM συνάγεται ότι η δομή, τόσο της πολυπυρρόλης, όσο και του νανοσυνθέτου δεν είναι συμπαγής, αλλά εμφανίζεται σαν ένα συσσωμάτωμα κόκκων με διαστάσεις 200–300nm. Οι διαστάσεις των νανοσωματιδίων της TiO2 προκύπτουν περίπου 20nm, όπως αναμένεται από τις προδιαγραφές της, ενώ οι διαστάσεις των αγώγιμων νησίδων της πολυπυρρόλης εκτιμώνται με βάση τις αντίστοιχες διαστάσεις των αγώγιμων νησίδων στην πολυανιλίνη, της τάξεως των 20-30nm. Το γεγονός ότι οι διαστάσεις των αγώγιμων νησίδων είναι περίπου ίσες με εκείνες των νανοσωματιδίων TiO2 σημαίνει ότι οι δεύτερες μπορούν να παρεμβάλλονται ανάμεσα στις πρώτες, πράγμα που δικαιολογεί τον ρυθμό μεταβολής του φραγμού δυναμικής ενέργειας, ο οποίος είναι μικρότερος στην περίπτωση του νανοσυνθέτου.
Μια άλλη πληροφορία από τις μικροφωτογραφίες SEM είναι ότι, η θερμική καταπόνηση εξομαλύνει το ανάγλυφο της επιφάνειας και συντελεί στην συσσωμάτωση των κόκκων του υλικού. Η διαδικασία αυτή συμβαίνει με την απομάκρυνση του Cl- με μορφή HCl, γεγονός το οποίο μειώνει την αγωγιμότητα λόγω αποπρωτονίωσης των αλυσίδων του πολυμερούς. Αντίθετα, η ταυτόχρονη συσσωμάτωση των κόκκων του υλικού αυξάνει την αγωγιμότητα. Παρατηρούμε ότι συνυπάρχουν δύο ανταγωνιζόμενοι μηχανισμοί μεταβολής της ηλεκτρικής αγωγιμότητας.
Οι διαφορές στις ισόθερμες καμπύλες για θερμοκρασίες 100, 300 και 380Κ, σε περιβάλλον ατμοσφαιρικού αέρα, αφενός, και αδρανούς ατμόσφαιρας ηλίου αφετέρου, συνδέονται με τον ρόλο που παίζουν οι εξής παράγοντες:
a) Η θερμοκρασία, η οποία καθορίζει την κινητικότητα των πολυμερικών αλυσίδων και τη διέγερση των φορέων αγωγιμότητας, καθώς και το ρυθμό διάχυσης και την ταχύτητα των χημικών αντιδράσεων με το οξυγόνο και την υγρασία του αέρα. Θα πρέπει να ληφθεί υπόψη ότι η θερμοκρασία υαλώδους μετάβασης Tg για την PPy, πάνω από την οποία συμβαίνουν συνεργατικές κινήσεις των αλυσίδων, ποικίλει ανάμεσα στους 250 και στους 400Κ και εξαρτάται από τη μέθοδο παρασκευής, τη φύση των προσμίξεων και τη θέση που καταλαμβάνουν μέσα στο υλικό, είτε συμμετέχοντας στη δομή της αλυσίδας, είτε σχηματίζοντας πλευρικούς κλάδους.
b) Η ύπαρξη οξυγόνου και υγρασίας του ατμοσφαιρικού αέρα, τα οποία, όπως έχει αναφερθεί παίζουν σημαντικό ρόλο στον τεμαχισμό των αλυσίδων, ο οποίος καταστρέφει το συζυγή χαρακτήρα του υλικού.
c) Η ύπαρξη TiO2, η οποία χαρακτηρίζεται από ενεργειακό χάσμα μεγαλύτερο από εκείνο της PPy και σε υψηλές θερμοκρασίες συντελεί στην μεταφορά οξυγόνου στο πολυμερές με αποτέλεσμα ανάλογο με εκείνο που προκαλεί το οξυγόνο του ατμοσφαιρικού αέρα.
Ειδικότερα οι καμπύλες στους 100Κ δείχνουν τον καθοριστικό ρόλο του οξυγόνου και της υγρασίας στην μείωση της αγωγιμότητας σε ατμόσφαιρα δωματίου. Επί πλέον σε ατμόσφαιρα He αποκαλύπτουν μηχανισμό αύξησης της αγωγιμότητας.
Στους 300Κ η παρουσία TiO2 εξασθενεί τον μηχανισμό βελτίωσης των αλυσίδων, διότι τα νανοσωματίδια μειώνουν την κινητικότητα και επομένως την διευθέτηση των πολυμερικών αλυσίδων και την αύξηση της αγωγιμότητας. Τα μέγιστα που παρατηρούνται στα πρώτα 10min αποδίδονται στη βελτίωση της διάταξης των αλυσίδων του πολυμερούς. Για μεγαλύτερους χρόνους επικρατούν οι καταστροφικοί μηχανισμοί γήρανσης, λόγω της παρουσίας οξυγόνου και υγρασίας, αλλαγές της δομής, οι οποίοι αποκόπτουν τους δρόμους διέλευσης των φορέων, με αποτέλεσμα την μείωση της αγωγιμότητας. Εξαίρεση αποτελεί η πολυπυρρόλη σε ατμόσφαιρα He, όπου η έλλειψη οξυγόνου και υγρασίας έχει σαν αποτέλεσμα τη αύξηση της αγωγιμότητας σε όλη τη διάρκεια της θερμικής καταπόνησης. Εντελώς διαφορετική είναι η συμπεριφορά του νανοσυνθέτου πολυπυρρόλης/5% w/w TiO2 στη θερμοκρασία των 300Κ σε ατμόσφαιρα He. Η μείωση της αγωγιμότητας με την θερμική καταπόνηση μπορεί να αποδοθεί στη μεταφορά οξυγόνου από την TiO2 στο πολυμερές, με αποτέλεσμα τον τεμαχισμό των αλυσίδων και τη μείωση της αγωγιμότητας.
Τέλος, στους 380Κ η εμφάνιση του μέγιστου είναι λιγότερο έντονη και δείχνει ότι στη θερμοκρασία αυτή, υπερισχύουν πολύ περισσότερο οι καταστροφικοί μηχανισμοί, τόσο παρουσία ατμοσφαιρικού αέρα, όσο και αδρανούς He.
|