Αποδοτικοί αλγόριθμοι εξατομίκευσης βασισμένοι σε εξόρυξη γνώσης απο δεδομένα χρήσης Web

Το Web αποτελεί πλέον µια τεράστια αποθήκη πληροφοριών και συνεχίζει να µεγαλώνει εκθετικά, ενώ η ανθρώπινη ικανότητα να εντοπίζει, να επεξεργάζεται και να αντιλαµβάνεται τις πληροφορίες παραµένει πεπερασµένη. Το πρόβληµα στις µέρες µας δεν είναι η πρόσβαση στην πληροφορία, αλλά το ότι όλο και περισ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ρήγκου, Μαρία
Άλλοι συγγραφείς: Τσακαλίδης, Αθανάσιος
Γλώσσα:Greek
Έκδοση: 2007
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/272
Περιγραφή
Περίληψη:Το Web αποτελεί πλέον µια τεράστια αποθήκη πληροφοριών και συνεχίζει να µεγαλώνει εκθετικά, ενώ η ανθρώπινη ικανότητα να εντοπίζει, να επεξεργάζεται και να αντιλαµβάνεται τις πληροφορίες παραµένει πεπερασµένη. Το πρόβληµα στις µέρες µας δεν είναι η πρόσβαση στην πληροφορία, αλλά το ότι όλο και περισσότεροι άνθρωποι µε διαφορετικές ανάγκες και προτιµήσεις πλοηγούνται µέσα σε περίπλοκες δοµές Web χάνοντας στην πορεία το στόχο της αναζήτησής τους. Η εξατοµίκευση, µια πολυσυλλεκτική ερευνητική περιοχή, αποτελεί µια από τις πιο πολλά υποσχόµενες προσεγγίσεις για τη λύση του προβλήµατος του πληροφοριακού υπερφόρτου, παρέχοντας κατάλληλα προσαρµοσµένες εµπειρίες πλοήγησης. Η διατριβή εξετάζει αλγοριθµικά θέµατα που σχετίζονται µε την υλοποίηση αποδοτικών σχηµάτων εξατοµίκευσης σε περιβάλλον web, βασισµένων σε εξόρυξη γνώσης από δεδοµένα χρήσης web. Οι τεχνικές ανακάλυψης προτύπων που µελετώνται περιλαµβάνουν το clustering, την εξόρυξη κανόνων συσχέτισης και την ανακάλυψη σειριακών προτύπων, ενώ οι προτεινόµενες λύσεις εξατοµίκευσης που βασίζονται στις δύο τελευταίες τεχνικές συνδυάζουν τα δεδοµένα χρήσης µε δεδοµένα περιεχοµένου και δοµής. Ειδικότερα, στο πρώτο κεφάλαιο της διατριβής, ορίζεται το επιστηµονικό πεδίο των σύγχρονων τεχνολογιών εξατοµίκευσης στο περιβάλλον του web, εστιάζοντας στη στενή σχέση τους µε το χώρο του web mining, στοιχειοθετώντας µε αυτό τον τρόπο το γενικότερο πλαίσιο αναφοράς. Στη συνέχεια, περιγράφονται τα διαδοχικά στάδια της τυπικής διαδικασίας εξατοµίκευσης µε έµφαση στη φάση ανακάλυψης προτύπων και τις τεχνικές machine learning που χρησιµοποιούνται σε δεδοµένα χρήσης web και το κεφάλαιο ολοκληρώνεται µε µια συνοπτική περιγραφή της συµβολής της διατριβής στο πεδίο της εξατοµίκευσης σε περιβάλλον web. Στο δεύτερο κεφάλαιο προτείνεται ένας αλγόριθµος για εξατοµικευµένο clustering, που βασίζεται σε µια δοµή range tree που διατρέχεται σε πρώτη φάση για τον εντοπισµό των web αντικειµένων που ικανοποιούν τα ατοµικά κριτήρια του χρήστη. Στα αντικείµενα αυτά, εφαρµόζεται στη συνέχεια clustering, ώστε να είναι δυνατή η αποδοτικότερη διαχείρισή τους και να διευκολυνθεί η διαδικασία λήψης αποφάσεων από πλευράς χρήστη. O αλγόριθµος που προτείνεται αποτελεί βελτίωση του αλγόριθµου kmeans range, καθώς εκµεταλλεύεται το range tree που έχει ήδη κατασκευαστεί κατά το βήµα της εξατοµίκευσης και το χρησιµοποιεί ως τη βασική δοµή πάνω στην οποία στηρίζεται το βήµα του clustering χρησιµοποιώντας εναλλακτικά του k-means, τον αλγόριθµο k-windows. Ο συνολικός αριθµός παραµέτρων που χρησιµοποιούνται για την µοντελοποίηση των αντικειµένων υπαγορεύει και τον αριθµό των διαστάσεων του χώρου εργασίας. Η συνολική πολυπλοκότητα χρόνου του αλγορίθµου είναι ίση µε O(logd-2n+v), όπου n είναι ο συνολικός αριθµός των στοιχείων που δίνονται σαν είσοδος και v είναι το µέγεθος της απάντησης. Στο τρίτο κεφάλαιο της διατριβής προτείνεται ένα αποδοτικό σχήµα πρόβλεψης µελλοντικών δικτυακών αιτήσεων βασισµένο στην εξόρυξη σειριακών προτύπων πλοήγησης (navigation patterns) από αρχεία server log, σε συνδυασµό µε την τοπολογία των συνδέσµων του website και τη θεµατική κατηγοριοποίηση των σελίδων του. Τα µονοπάτια που ακολουθούν οι χρήστες κατά την πλοήγηση καταγράφονται, συµπληρώνονται µε τα κοµµάτια που λείπουν λόγω caching και διασπώνται σε συνόδους και σε επεισόδια, ώστε να προκύψουν σηµασιολογικά πλήρη υποσύνολά τους. Τα πρότυπα που εντοπίζονται στα επεισόδια µοντελοποιούνται µε τη µορφή n-grams και οι αποφάσεις πρόβλεψης βασίζονται στη λογική ενός µοντέλου n-gram+ που προσοµοιάζει το all Kth-τάξης µοντέλο Markov και πιο συγκεκριµένα, το επιλεκτικό µοντέλο Markov. Η υβριδική προσέγγιση που υιοθετεί το προτεινόµενο σχήµα, επιτυγχάνει 100% coverage, ενώ κατά τις πειραµατικές µετρήσεις το άνω όριο της ακρίβειας έφθασε το 71,67% στο σύνολο των προβλέψεων που επιχειρήθηκαν. Το χαρακτηριστικό του πλήρους coverage καθιστά το σχήµα κατάλληλο για συστήµατα παραγωγής συστάσεων, ενώ η ακρίβεια µπορεί να βελτιωθεί περαιτέρω αν µεγαλώσει το παράθυρο πρόβλεψης. Στο τέταρτο κεφάλαιο της διατριβής, εξετάζεται η ενσωµάτωση λειτουργιών εξατοµίκευσης στις ηλεκτρονικές µαθησιακές κοινότητες και προτείνεται ένα σύνολο από δυνατότητες εξατοµίκευσης που διαφοροποιούνται ως προς τα δεδοµένα στα οποία βασίζονται, την τεχνική εξόρυξης προτύπων που χρησιµοποιούν και την αντίστοιχη πολυπλοκότητα υλοποίησης. Οι υπηρεσίες αυτές περιλαµβάνουν: (α) εξατοµίκευση µε βάση το ρόλο του χρήστη, (β) εξατοµίκευση µε βάση το βαθµό δραστηριοποίησης του χρήστη, (γ) εξατοµίκευση µε βάση την ανακάλυψη προτύπων στα ατοµικά ιστορικά µελέτης των εκπαιδευόµενων και (δ) εξατοµίκευση µε βάση συσχετίσεις του περιεχοµένου των µαθηµάτων.