Περίληψη: | Ο Παγκόσμιος Ιστός Πληροφοριών (Web) χαρακτηρίζεται σαν ένα περιβάλλον αχανές, ετερογενές, κατανεμημένο και πολύπλοκο με αποτέλεσμα να είναι δύσκολος ο αποδοτικός χειρισμός των δεδομένων των e-εφαρμογών με βάση παραδοσιακές μεθόδους και τεχνικές. Αυτό με τη σειρά του οδηγεί στην απαίτηση για σχεδιασμό, ανάπτυξη και υιοθέτηση «ευφυών» εργαλείων που θα επιλέξουν και θα εμφανίσουν στο χρήστη την κατάλληλη πληροφορία, στον κατάλληλο χρόνο και με την κατάλληλη μορφή. Η παρούσα διδακτορική διατριβή ασχολείται με το πρόβλημα της εξόρυξης «κρυμμένης» γνώσης από συστήματα και εφαρμογές ηλεκτρονικής μάθησης (e-learning), ηλεκτρονικού εμπορίου (e-commerce) και επιχειρηματικής ευφυΐας (business intelligence) με κύριο στόχο τη βελτίωση της ποιότητας και της απόδοσης των παρεχόμενων υπηρεσιών προς τους τελικούς χρήστες. Συγκεκριμένα, τα ερευνητικά αποτελέσματα επικεντρώνονται στα ακόλουθα: α) Μεθοδολογίες, τεχνικές και προτεινόμενοι αλγόριθμοι εξόρυξης «κρυμμένης» γνώσης από e-εφαρμογές λαμβάνοντας υπόψη τη σημασιολογία των δεδομένων, β) Παραγωγή εξατομικευμένων εκπαιδευτικών εμπειριών, γ) Παραγωγή αποδοτικών συστάσεων για την αγορά online προϊόντων, δ) Παραγωγή επιστημονικών και τεχνολογικών δεικτών από διπλώματα ευρεσιτεχνίας για την ανάδειξη του επιπέδου καινοτόμου δραστηριότητας μιας αγοράς, ε) Προτάσεις για μελλοντικές ερευνητικές κατευθύνσεις που επεκτείνουν τις τεχνικές εξόρυξης γνώσης σε πιο σύνθετους τύπους εφαρμογών και αναδεικνύουν νέες ερευνητικές ευκαιρίες. Στο πρώτο κεφάλαιο παρουσιάζεται μια προσέγγιση για την υποστήριξη εξατομικευμένου e-learning όπου η δομή και η σχέση των δεδομένων και των πληροφοριών παίζουν ουσιαστικό ρόλο. Ο προτεινόμενος αλγόριθμος βασίζεται σε μια οντολογία (ontology) η οποία βοηθά στη δόμηση και στη διαχείριση του περιεχομένου που σχετίζεται με μια δεδομένη σειρά μαθημάτων, ένα μάθημα ή ένα θεματικό. Η διαδικασία χωρίζεται σε δύο στάδια: στις offline ενέργειες προετοιμασίας των δεδομένων, δημιουργίας της οντολογίας και εξόρυξης από δεδομένα χρήσης (usage mining) και στην online παροχή της εξατομίκευσης. Το σύστημα βρίσκει σε πρώτη φάση ένα αρχικό σύνολο συστάσεων βασισμένο στην οντολογία του πεδίου και στη συνέχεια χρησιμοποιεί τα frequent itemsets (συχνά εμφανιζόμενα σύνολα στοιχείων) για να το εμπλουτίσει, λαμβάνοντας υπόψη την πλοήγηση άλλων παρόμοιων χρηστών (similar users). Με τον τρόπο αυτό, μειώνουμε το χρόνο που απαιτείται για την ανάλυση όλων των frequent itemsets και των κανόνων συσχέτισης. Εστιάζουμε μόνο σε εκείνα τα σύνολα που προέρχονται από το συνδυασμό της ενεργούς συνόδου (current session) του χρήστη και των συστάσεων της οντολογίας. Επιπλέον, αυτή η προσέγγιση ανακουφίζει και το πρόβλημα των μεγάλων χρόνων απόκρισης, το οποίο μπορεί στη συνέχεια να οδηγήσει στην εγκατάλειψη του e-learning συστήματος. Αν και η εξατομίκευση απαιτεί αρκετά βήματα επεξεργασίας και ανάλυσης, το εμπόδιο αυτό αποφεύγεται με την εκτέλεση σημαντικού μέρους της διαδικασίας offline. Στο δεύτερο κεφάλαιο μελετάται το πρόβλημα της παραγωγής προτάσεων σε μια εφαρμογή e-commerce. Τα συστήματα συστάσεων (recommendations systems ή RSs) αποτελούν ίσως την πιο δημοφιλή μορφή εξατομίκευσης και τείνουν να μετατραπούν στις μέρες μας σε σημαντικά επιχειρησιακά εργαλεία. Η προτεινόμενη υβριδική προσέγγιση στοχεύει στην παραγωγή αποτελεσματικών συστάσεων για τους πελάτες ενός online καταστήματος που νοικιάζει κινηματογραφικές ταινίες. Η γνώση για τους πελάτες και τα προϊόντα προκύπτει από δεδομένα χρήσης και τη δομή της οντολογίας σε συνδυασμό με τις εκτιμήσεις-βαθμολογίες των πελατών για τις ταινίες καθώς και την εφαρμογή τεχνικών ταιριάσματος «όμοιων» πελατών. Όταν ένα ή περισσότερα κριτήρια ταιριάσματος ικανοποιούνται, τότε άλλες ταινίες μπορούν να προσδιοριστούν σύμφωνα με το οντολογικό σχήμα που έχουν παρόμοια χαρακτηριστικά με αυτές που ο πελάτης έχει ήδη νοικιάσει. Στην περίπτωση ενός νέου πελάτη όπου το ιστορικό του είναι κενό, πληροφορίες από την αίτηση εγγραφής του αναλύονται ώστε να ταξινομηθεί σε μια συγκεκριμένη κλάση πελατών και να παραχθούν προτάσεις με βάση το οντολογικό σχήμα. Αυτή η ολοκλήρωση παρέχει πρόσθετη γνώση για τις προτιμήσεις των πελατών και επιτρέπει την παραγωγή επιτυχημένων συστάσεων. Ακόμη και στην περίπτωση του «cold-start problem» όπου δεν είναι διαθέσιμη αρχική πληροφορία για τη συμπεριφορά του πελάτη, η προσέγγιση μπορεί να προβεί σε σχετικές συστάσεις. Τέλος, στο τρίτο κεφάλαιο μελετάται το πρόβλημα της εξόρυξης γνώσης από καταχωρήσεις διπλωμάτων ευρεσιτεχνίας που καταδεικνύουν το επίπεδο της καινοτόμου δραστηριότητας μιας αγοράς. Η προτεινόμενη προσέγγιση αφορά στην εφαρμογή τεχνικών Text Mining σε διπλώματα ευρεσιτεχνίας που βρίσκονται καταχωρημένα σε βάσεις δεδομένων διαφόρων διεθνών οργανισμών διαχείρισής τους, με στόχο την παραγωγή επιστημονικών και τεχνολογικών δεικτών για την ανάδειξη του επιπέδου καινοτομίας μιας αγοράς και συνεπώς την επιχειρηματική ευφυΐα. Αρχικά τα δεδομένα καθαρίζονται προκειμένου να βελτιωθεί η ποιότητά τους πριν την επεξεργασία. Στη συνέχεια εφαρμόζονται δύο τύποι επεξεργασίας η απλή ανάλυση (simple analysis) και η στατιστική ανάλυση (statistical analysis). Στην πρώτη περίπτωση παράγονται γραφήματα που συσχετίζουν τις πληροφορίες π.χ. κύριοι τομείς ανάπτυξης σε μια χώρα. Στη δεύτερη περίπτωση αναλύονται γλωσσολογικά τα πεδία title και abstract των διπλωμάτων ευρεσιτεχνίας και ομαδοποιούνται τα λήμματα των λέξεων. Στη συνέχεια πάνω στα δεδομένα εφαρμόζονται τεχνικές correspondence και clustering analysis έτσι ώστε αυτά να ομαδοποιηθούν σύμφωνα με τις τεχνολογίες στις οποίες αναφέρονται. Τα clusters πλέον αυτά προβάλλονται όπως και στην απλή ανάλυση παρέχοντας στο χρήστη μια πιο λεπτομερή απεικόνιση της πληροφορίας των διπλωμάτων ευρεσιτεχνίας. Ο συνδυασμός των αναλύσεων που εφαρμόζονται με βάση την προτεινόμενη μεθοδολογία επιτρέπει την αποτύπωση των τεχνολογικών εξελίξεων και καινοτομιών. Οι δείκτες που παράγονται είναι πολύ σημαντικοί αφού μπορούν να ποσοτικοποιήσουν τις πληροφορίες που αφορούν σε συγκεκριμένες τεχνολογίες. Με αυτό τον τρόπο μπορούμε να παράγουμε δείκτες για τη δραστηριότητα συγκεκριμένων φορέων, εφευρετών, χωρών, κλπ. Τέλος, τεχνολογικοί δείκτες που υποδεικνύουν μελλοντικές ελπιδοφόρες τεχνολογίες καθώς και ποιοι φορείς θα είναι πρωτοπόροι σε αυτές μπορούν να εξαχθούν.
|