Περίληψη: | Σήμερα οι διωκτικές αρχές χρησιμοποιούν αυτόματα βιομετρικά συστήματα αναγνώρισης τα οποία αξιοποιούν βιομετρικά χαρακτηριστικά ατόμων προκειμένου να αναγνωριστούν δράστες εγκλημάτων.
Στην παρούσα εργασία έγινε προσπάθεια συσχέτισης αυτής με το αντικείμενο των εγκληματολογικών εργαστηρίων των διωκτικών αρχών. Έτσι δημιουργήθηκε βάση φωνητικών δειγμάτων και κατασκευάστηκε σύστημα αναγνώρισης ομιλητή σε περιβάλλον Matlab με στόχο την μελλοντική αύξηση της βάσης δεδομένων αλλά και την μελλοντική δυνατότητα συνδυασμού: α) εξαγομένων χαρακτηριστικών, β) μεθόδων σύγκρισης των κατανομών φωνητικών δειγμάτων και γ) μεθόδων ταξινόμησης έτσι ώστε να αυξηθεί η απόδοση και να γίνει περισσότερο αξιόπιστο το σύστημα. Το σύστημα που σχεδιάσαμε έχει τα εξής χαρακτηριστικά: α) full automatic, β) open set και γ) text dependent & text in dependent.
Από κάθε φωνητικό δείγμα εξάχθηκαν οι mel frequency coefficients με την εργαλειοθήκη Auditory Toolbox, Malcolm Slaney. Η σύγκριση των χαρακτηριστικών των δειγμάτων ομιλίας υλοποιήθηκε με δυο μεθόδους σύγκρισης : Α) Μια διαδικασία που την ονομάσαμε 3Μ (minimum-mean-maximum) η οποία χρησιμοποιεί την Ευκλείδεια απόσταση για την εύρεση αποστάσεων μεταξύ σημείων των κατανομών.
Β) Το Wald – Wolfowitz Test (WW-Test ), που στηρίζεται στην θεωρία των γράφων.
Τέλος για την ταξινόμηση χρησιμοποιήθηκε ο K-NN ταξινομητής (K – Nearest Neighbor Classifier).
Από τα εξαγόμενα αποτελέσματα των μετρήσεων καταλήξαμε στα ακόλουθα συμπεράσματα. Τα όποια σφάλματα προέκυψαν οφείλονται κυρίως στον τρόπο εξαγωγής των mfcc χαρακτηριστικών και λιγότερο στην μέθοδο ταξινόμησης και στον συγκριτή που χρησιμοποιήθηκε. Με την χρήση συνδυαστικά επιπλέον χαρακτηριστικών και ταξινομητών το σύστημα θα γίνει περισσότερο αξιόπιστο. Το σύστημα με μελλοντική αύξηση της βάσης θα μας δώσει ακόμη καλύτερα αποτελέσματα.
|