Ομάδες διαιρετότητας

Η θεωρία της διαιρετότητας, η ιστορία της οποίας είναι πολύ παλιά, καλύπτει πολλούς κλάδους της σύγχρονης Άλγεβρας, όπως είναι η θεωρία των δακτυλίων, η θεωρία των διατεταγμένων ομάδων και φυσικά η θεωρία των αριθμών. Η θεωρία της διαιρετότητας ίσως θα μπορούσε να μελετηθεί σε δύο ενότητες:...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Κουνάβης, Παναγιώτης
Άλλοι συγγραφείς: Κοντολάτου, Αγγελική
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2010
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/3877
Περιγραφή
Περίληψη:Η θεωρία της διαιρετότητας, η ιστορία της οποίας είναι πολύ παλιά, καλύπτει πολλούς κλάδους της σύγχρονης Άλγεβρας, όπως είναι η θεωρία των δακτυλίων, η θεωρία των διατεταγμένων ομάδων και φυσικά η θεωρία των αριθμών. Η θεωρία της διαιρετότητας ίσως θα μπορούσε να μελετηθεί σε δύο ενότητες: Α) Αυστηρή πολλαπλασιαστική θεωρία. Β) Θεωρία της διαιρετότητας των δακτυλίων. Η παρούσα εργασία προέρχεται από τις προσπάθειες να περιγραφούν λεπτομερώς κάποια αποτελέσματα τα οποία είναι συνδεδεμένα με το μέρος (Β) του παραπάνω διαχωρισμού της θεωρίας της διαιρετότητας και είναι πλήρως αφιερωμένο στην διερεύνηση της ομάδας διαιρετότητας G(A) μίας περιοχής A, όπου G(A) είναι η ομάδα πηλίκο K*IU(A) με K* την πολλαπλασιαστική ομάδα του σώματος πηλίκου της A και U(A) την ομάδα των ενάδων της A με διάταξη οριζόμενη από το θετικό κώνο G(A)+=A*IU(A). Σε αντίθεση προς την εργασία του Aubert που έχει σχέση με τις καθαρά πολλαπλασιαστικές ιδιότητες τής G(A), εμείς σκόπιμα κρατάμε στο μυαλό μας την προέλευση τής G(A) από μία περιοχή Α, δηλαδή συχνά χρησιμοποιούμε ιδιότητες τής G(A) οι οποίες δεν είναι πολλαπλασιαστικής μορφής. Αυτή η προσέγγιση εμφανίζεται εξ’ ολοκλήρου όταν έχουμε να κάνουμε με μία δομή d-ομάδας σε μία ομάδα διαιρετότητας, δηλ. όταν θεωρούμε ότι είναι μία μερικώς διατεταγμένη ομάδα με μία πλειότιμη πρόσθεση +A η οποία εξαρτάται από την A. Χρησιμοποιώντας αυτή την δομή d-ομάδας της G(A) είναι δυνατόν να ανακαλύπτουμε πολλές ιδιότητες της περιοχής A, χρησιμοποιώντας κάποιες ιδιότητες της (G(A), +A) ακόμη και στην περίπτωση όπου η υπό μελέτη ιδιότητα δεν μπορεί πιθανά να εκφραστεί στην γλώσσα των μερικώς διατεταγμένων ομάδων. Επιπλέον, είναι μία καλή αφορμή να σκεφτούμε ένα τέτοιο σύστημα από την στιγμή που μας επιτρέπει να μελετήσουμε τους δακτυλίους και τα μερικώς διατεταγμένα συστήματα με έναν ενιαίο τρόπο.