Εσωτερικές και εξωτερικές ροές

Στην παρούσα διατριβή αναπτύσσεται η γραμμικοποιημένη μέθοδος των πεπερασμένων διαφορών. Η μέθοδος αυτή αποτελεί νέα αριθμητική τεχνική επιλύσεως των διαφορικών εξισώσεων δευτέρας τάξεως, κανονικών και με μερικές παραγώγους και εφαρμόζεται σε εσωτερικές και εξωτερικές ροές. Συγκεκριμένα, στο πρώτο...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Νιάκας, Νικόλαος
Άλλοι συγγραφείς: Ντούσκος, Χρήστος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2011
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/4185
id nemertes-10889-4185
record_format dspace
spelling nemertes-10889-41852022-09-05T05:38:24Z Εσωτερικές και εξωτερικές ροές Internal and external flows Νιάκας, Νικόλαος Ντούσκος, Χρήστος Χατζηκωνσταντίνου, Παύλος Περδίος, Ευστάθιος Ράπτης, Ανδρέας Μάργαρης, Διονύσιος Λουκόπουλος, Βασίλειος Παπαδόπουλος, Πολύκαρπος Ντούσκος, Χρήστος Niakas, Nicholaos Ροές Αριθμητικές μέθοδοι Στρόβιλοι Taylor Πρόβλημα von Karman Flows Numerical methods Taylor vortices Von Karman problem 515.3 Στην παρούσα διατριβή αναπτύσσεται η γραμμικοποιημένη μέθοδος των πεπερασμένων διαφορών. Η μέθοδος αυτή αποτελεί νέα αριθμητική τεχνική επιλύσεως των διαφορικών εξισώσεων δευτέρας τάξεως, κανονικών και με μερικές παραγώγους και εφαρμόζεται σε εσωτερικές και εξωτερικές ροές. Συγκεκριμένα, στο πρώτο κεφάλαιο γίνεται εισαγωγή στις μεθόδους διακριτοποιήσεως μιας διαφορικής εξισώσεως και στον τρόπο επίλυσης ενός γραμμικού συστήματος αλγεβρικών εξισώσεων. Στο δεύτερο κεφάλαιο εκτίθεται η μέθοδος των Allen και Southwell για τη λύση της εξισώσεως της στροβιλότητας προκειμένου περί δισδιάστατης ροής και η τροποποίηση και βελτίωση της μεθόδου από τον Dennis. Εν συνεχεία περιγράφεται η περαιτέρω βελτίωση της μεθόδου, διά της οποίας ο πίνακας του συστήματος των συντελεστών των αγνώστων καθίσταται διαγωνίως υπέρτερος. Στο τρίτο κεφάλαιο η βελτιωμένη μέθοδος επεκτείνεται στις τρεις διαστάσεις με μεταβλητούς συντελεστές και εφαρμόζεται στην λύση αντιστοίχου προβλήματος ροής ιδανικού ρευστού εντός σωλήνα. Στο τέταρτο κεφάλαιο η παρούσα μέθοδος γενικεύεται μεταβλητούς συντελεστές. Στο πέμπτο κεφάλαιο επιλύεται η εξίσωση της στροβιλότητας στις τρεις διαστάσεις σε σύστημα κυλινδρικών συντεταγμένων και ο αλγόριθμος εφαρμόζεται στο πρόβλημα του von Kármán. Τέλος, στο έκτο κεφάλαιο εξετάζεται η περίπτωση της αριθμητικής εξομοίωσης στροβίλων Taylor προκειμένου περί ροής ιξώδους ρευστού, το οποίο περιέχεται εντός σφαιρικού κελύφους, η δε κίνηση του ρευστού προκαλείται από την διαφορική περιστροφή των δύο σφαιρών γύρω από την κοινή διάμετρό τους. In the present dissertation a numerical technique is developed on the solution of ordinary and/or partial differential equations of second order with variable coefficients. In particular, in the first chapter we make a general introduction to the discretisation methods and to the methods of solution of a linear system of algebraic equations. In the second chapter the method of Allen and Southwell on the solution of the vorticity equation in two dimensional flow is presented as well as its modification and improvement by Dennis. The contribution of the present work is on the further improvement of the previous method, such that the matrix of the coefficients of the unknowns becomes diagonally dominant and its extension to three dimensional problems. The consecutive steps of the method (Linearized Finite Difference Method, LFDM) are worked out on the ordinary differential equation with variable coefficients. Next, the method is applied to the solution of two problems from Fluid Mechanics. In the third chapter the improved method is extended to three dimensions with variable coefficients. Accordingly the method is applied to the solution of the equations of motion of a perfect fluid moving in a straight tube. In the fourth chapter the present method is generalized with variable coefficients. In the fifth chapter the three dimensional equation of the vorticity expressed in cylindrical coordinates is solved and the results are applied to the von Kármán problem. Finally in the sixth chapter we use this method to simulate Taylor vortices in spherical annular flow in the presence of heat, the motion of the fluid being induced by the differencial rotation of two spheres about their common diameter. 2011-03-09T18:41:44Z 2011-03-09T18:41:44Z 2010-09-24 2011-03-09T18:41:44Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/4185 gr Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf
institution UPatras
collection Nemertes
language Greek
topic Ροές
Αριθμητικές μέθοδοι
Στρόβιλοι Taylor
Πρόβλημα von Karman
Flows
Numerical methods
Taylor vortices
Von Karman problem
515.3
spellingShingle Ροές
Αριθμητικές μέθοδοι
Στρόβιλοι Taylor
Πρόβλημα von Karman
Flows
Numerical methods
Taylor vortices
Von Karman problem
515.3
Νιάκας, Νικόλαος
Εσωτερικές και εξωτερικές ροές
description Στην παρούσα διατριβή αναπτύσσεται η γραμμικοποιημένη μέθοδος των πεπερασμένων διαφορών. Η μέθοδος αυτή αποτελεί νέα αριθμητική τεχνική επιλύσεως των διαφορικών εξισώσεων δευτέρας τάξεως, κανονικών και με μερικές παραγώγους και εφαρμόζεται σε εσωτερικές και εξωτερικές ροές. Συγκεκριμένα, στο πρώτο κεφάλαιο γίνεται εισαγωγή στις μεθόδους διακριτοποιήσεως μιας διαφορικής εξισώσεως και στον τρόπο επίλυσης ενός γραμμικού συστήματος αλγεβρικών εξισώσεων. Στο δεύτερο κεφάλαιο εκτίθεται η μέθοδος των Allen και Southwell για τη λύση της εξισώσεως της στροβιλότητας προκειμένου περί δισδιάστατης ροής και η τροποποίηση και βελτίωση της μεθόδου από τον Dennis. Εν συνεχεία περιγράφεται η περαιτέρω βελτίωση της μεθόδου, διά της οποίας ο πίνακας του συστήματος των συντελεστών των αγνώστων καθίσταται διαγωνίως υπέρτερος. Στο τρίτο κεφάλαιο η βελτιωμένη μέθοδος επεκτείνεται στις τρεις διαστάσεις με μεταβλητούς συντελεστές και εφαρμόζεται στην λύση αντιστοίχου προβλήματος ροής ιδανικού ρευστού εντός σωλήνα. Στο τέταρτο κεφάλαιο η παρούσα μέθοδος γενικεύεται μεταβλητούς συντελεστές. Στο πέμπτο κεφάλαιο επιλύεται η εξίσωση της στροβιλότητας στις τρεις διαστάσεις σε σύστημα κυλινδρικών συντεταγμένων και ο αλγόριθμος εφαρμόζεται στο πρόβλημα του von Kármán. Τέλος, στο έκτο κεφάλαιο εξετάζεται η περίπτωση της αριθμητικής εξομοίωσης στροβίλων Taylor προκειμένου περί ροής ιξώδους ρευστού, το οποίο περιέχεται εντός σφαιρικού κελύφους, η δε κίνηση του ρευστού προκαλείται από την διαφορική περιστροφή των δύο σφαιρών γύρω από την κοινή διάμετρό τους.
author2 Ντούσκος, Χρήστος
author_facet Ντούσκος, Χρήστος
Νιάκας, Νικόλαος
format Thesis
author Νιάκας, Νικόλαος
author_sort Νιάκας, Νικόλαος
title Εσωτερικές και εξωτερικές ροές
title_short Εσωτερικές και εξωτερικές ροές
title_full Εσωτερικές και εξωτερικές ροές
title_fullStr Εσωτερικές και εξωτερικές ροές
title_full_unstemmed Εσωτερικές και εξωτερικές ροές
title_sort εσωτερικές και εξωτερικές ροές
publishDate 2011
url http://nemertes.lis.upatras.gr/jspui/handle/10889/4185
work_keys_str_mv AT niakasnikolaos esōterikeskaiexōterikesroes
AT niakasnikolaos internalandexternalflows
_version_ 1771297156856020992