Ροές επιτυχιών υπερβαίνουσες συγκεκριμένο μήκος σε δυαδικές ακολουθίες

Θεωρούμε μια ακολουθία Χ1, Χ2,..., Χn (n>0) δυαδικών δοκιμών με πιθανά αποτελέσματα «επιτυχία» (S ή 1) ή «αποτυχία» (F ή 0), δηλαδή 1, αν το i-οστό στοιχείο της ακολουθίας είναι S Xi = , i=1,2,…,n. 0, αν το i-οστό στοιχείο της ακολουθίας είναι F. Τα αποτελέσματα xi {0,1}, i≥1, μπορε...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Μπιτχαβά, Ειρήνη
Άλλοι συγγραφείς: Μακρή, Ευφροσύνη
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2011
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/4749
Περιγραφή
Περίληψη:Θεωρούμε μια ακολουθία Χ1, Χ2,..., Χn (n>0) δυαδικών δοκιμών με πιθανά αποτελέσματα «επιτυχία» (S ή 1) ή «αποτυχία» (F ή 0), δηλαδή 1, αν το i-οστό στοιχείο της ακολουθίας είναι S Xi = , i=1,2,…,n. 0, αν το i-οστό στοιχείο της ακολουθίας είναι F. Τα αποτελέσματα xi {0,1}, i≥1, μπορεί να είναι διατεταγμένα σε μία γραμμή ή σε ένα κύκλο. Τα στοιχεία της ακολουθίας μπορεί να είναι ανεξάρτητες ή εξαρτημένες δυαδικές τυχαίες μεταβλητές. Μια ροή επιτυχιών ορίζεται ως μια ακολουθία συνεχόμενων επιτυχιών (S) των οποίων προηγούνται και έπονται αποτυχίες (F) ή τίποτα. Ο αριθμός των επιτυχιών σε μια ροή επιτυχιών αναφέρεται ως μήκος της ροής. Η έννοια των ροών έχει χρησιμοποιηθεί στην εφαρμοσμένη πιθανότητα και στη στατιστική συμπερασματολογία. Συγκεκριμένα, η μελέτη του αριθμού των ροών επιτυχιών σύμφωνα με διάφορα σχήματα απαρίθμησης, αποτελεί ένα ενδιαφέρον θέμα από την εποχή του De Moivre (1756). Στις αρχές του 1940, οι ροές χρησιμοποιήθηκαν σε ελέγχους υποθέσεων από τους Wald και Wolfowitz (1940), όπως επίσης και σε στατιστικούς ελέγχους ποιότητας από τους Mosteller (1941) και Wolfowitz (1943). Επιπλέον, έχουν χρησιμοποιηθεί σε πολλούς άλλους τομείς, όπως στη μετεωρολογία, στη μοριακή βιολογία (ακολουθίες DNA), στην αστρονομία, στην οικολογία, στην ψυχολογία, καθώς και στην αξιοπιστία συστημάτων. Η παρούσα εργασία επικεντρώνεται στην τυχαία μεταβλητή που μετρά τον αριθμό των ροών επιτυχιών μήκους τουλάχιστον ίσο με ένα συγκεκριμένο μήκος k (1≤k≤n), δηλαδή στην τυχαία μεταβλητή Gn,k. Θα παρουσιάσουμε μελέτες που έχουν γίνει για τη μεταβλητή αυτή σε ακολουθίες δυαδικών τυχαίων μεταβλητών, οι οποίες είναι διατεταγμένες σε μία γραμμή. Συγκεκριμένα, στο πρώτο κεφάλαιο θα ασχοληθούμε με ακολουθίες ανεξάρτητων (ισόνομων ή μη) δοκιμών και θα προσδιορίσουμε την κατανομή της τυχαίας μεταβλητής Gn,k μέσω πινάκων πιθανοτήτων μετάβασης (με τη μέθοδο εμβάπτισης σε Μαρκοβιανή αλυσίδα), αναδρομικών σχέσεων, αθροισμάτων διωνυμικών συντελεστών και μέσω αθροισμάτων πολυωνυμικών συντελεστών. Επιπλέον, θα παρουσιάσουμε εκφράσεις για τις πιθανογεννήτριες συναρτήσεις και θα δώσουμε τύπους για τη μέση τιμή και τη διασπορά της τυχαίας μεταβλητής Gn,k. Στη συνέχεια, θα δώσουμε άνω/κάτω φράγματα και προσεγγίσεις για την κατανομή της Gn,k, χρησιμοποιώντας τη μέση τιμή και τη διασπορά της. Ειδικά στην περίπτωση των ανεξάρτητων και ισόνομων δοκιμών, θα μελετήσουμε την προσέγγιση της κατανομής της Gn,k από μια κατανομή Poisson και από μια κανονική κατανομή, και θα δώσουμε εκφράσεις για τη δεσμευμένη κατανομή της Gn,k δοθέντος του αριθμού των επιτυχιών. Στο δεύτερο κεφάλαιο θα ασχοληθούμε με ακολουθίες εξαρτημένων δοκιμών. Θα μελετήσουμε δύο τύπους εξάρτησης, την ανταλλαξιμότητα και τη Μαρκοβιανή εξάρτηση πρώτης τάξης. Θα δώσουμε εκφράσεις για τη συνάρτηση πιθανότητας και τις ροπές της τυχαίας μεταβλητής Gn,k, καθώς και φράγματα για την κατανομή της. Επίσης, θα μελετήσουμε την τυχαία μεταβλητή ορισμένη σε ακολουθία που προκύπτει από το σχήμα δειγματοληψίας Pόlya-Eggenberger, ως ειδική περίπτωση της ανταλλαξιμότητας. Τέλος, στο τρίτο κεφάλαιο θα παρουσιάσουμε εκφράσεις για τον υπολογισμό της αξιοπιστίας ενός γραμμικού συνεχόμενου-k-από-τα-n-συστήματος αποτυχίας με ανεξάρτητες (ισόνομες ή μη) συνιστώσες, μέσω διωνυμικών συντελεστών, αναδρομικών σχέσεων και της μεθόδου εμβάπτισης σε Μαρκοβιανή αλυσίδα. Επίσης, θα ασχοληθούμε με την εφαρμογή της κατανομής της τυχαίας μεταβλητής Gn,k στην αξιοπιστία γραμμικών συνεχόμενων συστημάτων αποτυχίας. Ως αριθμητικό παράδειγμα για την εφαρμογή των μεθόδων που παρουσιάζονται, θα χρησιμοποιήσουμε την τυχαία μεταβλητή G5,2 και το γραμμικό συνεχόμενο-2-από-τα-5 σύστημα αποτυχίας.