Περίληψη: | Αυτή η Διδακτορική Διατριβή πραγματεύεται το θέμα της ομαδοποίησης δεδομένων (clustering), καθώς και εφαρμογές των τεχνικών αυτών σε πραγματικά προβλήματα. Η παρουσίαση των επιμέρους θεμάτων και αποτελεσμάτων της διατριβής αυτής οργανώνεται ως εξής:
Στο Κεφάλαιο 1 παρέχουμε τον ορισμό της Υπολογιστικής Νοημοσύνης σαν τομέας ερευνάς, και αναλύουμε τα ξεχωριστά τμήματα που τον αποτελούν. Για κάθε ένα από αυτά παρουσιάζεται μια σύντομη περιγραφή.
Το Κεφάλαιο 2, ασχολείται με την ανάλυση του ερευνητικού πεδίου της ομαδοποίησης. Κάθε ένα από τα χαρακτηριστικά της αναλύεται ξεχωριστά και γίνεται μια επισκόπηση των σημαντικότερων αλγόριθμων ομαδοποίησης.
Το Κεφάλαιο 3, αφιερώνεται στη παρουσίαση του αλγορίθμου UKW, που κατά την εκτέλεση του έχει την ικανότητα να προσεγγίζει το πλήθος των ομάδων σε ένα σύνολο δεδομένων. Επίσης παρουσιάζονται πειραματικά αποτελέσματα με σκοπό τη μελέτη της απόδοσης του αλγορίθμου.
Στο Κεφάλαιο 4, προτείνεται μια επέκταση του αλγορίθμου UKW, σε μετρικούς χώρους. Η προτεινόμενη επέκταση διατηρεί όλα τα πλεονεκτήματα του αλγορίθμου UKW. Τα πειραματικά αποτελέσματα που παρουσιάζονται επίσης σε αυτό το κεφάλαιο, συγκρίνουν την προτεινόμενη επέκταση με άλλους αλγορίθμους.
Στο επόμενο κεφάλαιο παρουσιάζουμε τροποποιήσεις του αλγορίθμου με στόχο την βελτίωση των αποτελεσμάτων του. Οι προτεινόμενες τροποποιήσεις αξιοποιούν πληροφορία από τα τοπικά χαρακτηριστικά των δεδομένων, ώστε να κατευθύνουν όσο το δυνατόν καλύτερα την αλγοριθμική διαδικασία.
Το Κεφάλαιο 6, πραγματεύεται επεκτάσεις του αλγορίθμου σε κατανεμημένες Βάσεις δεδομένων. Για τις διάφορες υποθέσεις που μπορούν να γίνουν όσον αφορά τη φύση του περιβάλλοντος επικοινωνίας, παρουσιάζονται κατάλληλοι αλγόριθμοι.
Στο Κεφάλαιο 7, εξετάζουμε την περίπτωση δυναμικών βάσεων δεδομένων. Σε ένα τέτοιο μη στατικό περιβάλλον αναπτύσσεται μια επέκταση του αλγορίθμου UKW, που ενσωματώνει τη δυναμική δομή δεικτοδότησης Bkd-tree. Επιπλέον παρουσιάζονται θεωρητικά αποτελέσματα για την πολυπλοκότητα χειρότερης περίπτωσης του αλγορίθμου.
Το Κεφάλαιο 8, μελετά την εφαρμογή αλγορίθμων ομαδοποίησης σε δεδομένα γονιδιακών εκφράσεων. Επίσης προτείνεται και αξιολογείται ένα υβριδικό σχήμα που καταφέρνει να αυτοματοποιήσει την όλη διαδικασία επιλογής γονιδίων και ομαδοποίησης.
Τέλος, η παρουσίαση του ερευνητικού έργου αυτής της διατριβής ολοκληρώνεται στο Κεφάλαιο 9 που ασχολείται με την ανάπτυξη υβριδικών τεχνικών που συνδυάζουν την ομαδοποίηση και τα Τεχνητά Νευρωνικά Δίκτυα, και αναδεικνύει τις δυνατότητες τους σε δύο πραγματικά προβλήματα.
|