| Summary: | Τα τελευταία χρόνια, υπάρχει ένα αυξανόμενο ενδιαφέρον για την αυτόματη εξόρυξη κειμένων (Text Mining) με βιοϊατρικό περιεχόμενο, λόγω της ραγδαίας αύξησης των δημοσιεύσεων που είναι αποθηκευμένες σε ηλεκτρονική μορφή σε Βάσεις Δεδομένων του Παγκόσμιου Ιστού, όπως το PubMed και το Springerlink.
Το βασικό πρόβλημα που κάνει αυτό τον στόχο περισσότερο προκλητικό και δύσκολο είναι η αδυναμία της επεξεργασίας της διαθέσιμης αυτής πληροφορίας και της εξαγωγής χρήσιμων συνδέσεων και συμπερασμάτων. Κρίνεται, επομένως, επιτακτική η ανάπτυξη νέων εργαλείων που θα διευκολύνουν την εξόρυξη γνώσης από κείμενα βιολογικού περιεχομένου.
Σκοπός της παρούσας διπλωματικής εργασίας είναι αρχικά η παρουσίαση γνωστών μεθόδων εξόρυξης δεδομένων από κείμενα αλλά και η ανάπτυξη ενός εργαλείου για την αποδοτική και αξιόπιστη ανακάλυψη γνώσεων από βιοϊατρική βιβλιογραφία που να βασίζεται σε προηγμένες τεχνικές εξόρυξης γνώσης από κείμενα.
Πιο συγκεκριμένα, η προσπάθειά μας επικεντρώνεται στην ανάπτυξη ενός αποδοτικού αλγόριθμου συσταδοποίησης και τη χρήση αποδοτικών τεχνικών που αξιολογούν τα αποτελέσματα της συσταδοποίησης, έτσι ώστε να παρέχεται βοήθεια στον χρήστη στην προσπάθεια αναζήτησης του για πληροφορία βιολογικού περιεχομένου.
Ο προτεινόμενος αλγόριθμος βασίζεται σε διαφορετικές τεχνικές συσταδοποίησης, όπως ο Ιεραρχικός Αλγόριθμος και ο Spherical K-means Αλγόριθμος και εφαρμόζει μια τελική ταξινόμηση με βάση το Impact Factor των κειμένων που ανακτήθηκαν.
Τα βασικά βήματα που περιλαμβάνει ο αλγόριθμος είναι: η προεπεξεργασία των κειμένων, η αναπαράσταση των κειμένων σε διανυσματική μορφή με χρήση του Διανυσματικού Μοντέλου (Vector Space Model), η εφαρμογή της Λανθάνουσας Σημασιολογικής Δεικτοδότησης (Latent Semantic Indexing), η Ασαφής Συσταδοποίηση (Fuzzy Clustering), ο Ιεραρχικός Αλγόριθμος (Hierarchical Algorithm), o Spherical K-means Αλγόριθμος, η επιλογή της καλύτερης συστάδας και τέλος η ταξινόμηση με βάση το Impact Factor των κειμένων που ανακτήθηκαν.
Η εφαρμογή που υλοποιούμε βασίζεται στον παραπάνω αλγόριθμο και προσφέρει δύο τρόπους αναζήτησης: 1) σε τρέχοντα ερωτήματα του χρήστη, τα οποία αποθηκεύονται στη βάση δεδομένων και επομένως λειτουργεί ως μέσο συμπιεσμένης αποθήκευσης των προηγούμενων ερωτημάτων του χρήστη, 2) αναζήτηση μέσα από μία λίστα προκαθορισμένων Topic βιολογικού περιεχομένου και επομένως παρέχει στο χρήστη μια επιπλέον βοήθεια σε ένα ευρύ φάσμα ερωτημάτων. Επιπλέον, η εφαρμογή εξάγει χρήσιμες συσχετίσεις όρων χρησιμοποιώντας τις τελικές συστάδες.
|