Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας

Τα πολυεπίπεδα νευρωνικά δίκτυα έχουν εφαρμοστεί στο παρελθόν με μεγάλη επιτυχία στην πρόβλεψη χρονοσειρών από το χώρο της οικονομίας. Στην πράξη όμως παρουσιάζουν διάφορα προβλήματα όπως: Εύρεση του βέλτιστου υποσυνόλου χαρακτηριστικών και χρησιμοποίησή τους σαν εισόδου. Εύρεση της βέλτισ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Αμοργιανιώτης, Θωμάς
Άλλοι συγγραφείς: Λυκοθανάσης, Σπυρίδων
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2012
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/4952
id nemertes-10889-4952
record_format dspace
spelling nemertes-10889-49522022-09-05T06:58:01Z Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας Αμοργιανιώτης, Θωμάς Λυκοθανάσης, Σπυρίδων Θεοφιλάτος, Κωνσταντίνος Γεωργόπουλος, Ευστράτιος Καραθανασόπουλος, Ανδρέας Amorgianiotis, Thomas Νευρωνικά δίκτυα Γενετικοί αλγόριθμοι Ισοτιμία EUR/USD Neural networks Genetic algorithms Exchange rate EUR/USD ASE-20 006.3 Τα πολυεπίπεδα νευρωνικά δίκτυα έχουν εφαρμοστεί στο παρελθόν με μεγάλη επιτυχία στην πρόβλεψη χρονοσειρών από το χώρο της οικονομίας. Στην πράξη όμως παρουσιάζουν διάφορα προβλήματα όπως: Εύρεση του βέλτιστου υποσυνόλου χαρακτηριστικών και χρησιμοποίησή τους σαν εισόδου. Εύρεση της βέλτιστης δομής (επίπεδα κρυφών νευρώνων, αριθμός κρυφών νευρώνων). Εύρεση των βέλτιστων τιμών των παραμέτρων του αλγορίθμου εκπαίδευσης των τεχνητών νευρωνικών δικτύων (παράμετρος μάθησης, παράμετρος ορμής κλπ.) Σκοπός της διπλωματικής αυτής εργασίας είναι η δημιουργίας μιας υβριδικής μεθόδου γενετικών αλγορίθμων και νευρωνικών δικτύων. Ο γενετικός αλγόριθμος θα είναι υπεύθυνος στην εύρεση του βέλτιστου συνδυασμού των παραπάνω προς αναζήτηση παραμέτρων του νευρωνικού δικτύου. Η υβριδική αυτή μέθοδος θα εφαρμοστεί στο πρόβλημα της πρόβλεψης του δείκτη ASE-20 του ελληνικού χρηματιστηρίου καθώς και στο πρόβλημα της πρόβλεψης της ισοτιμίας δολαρίου-Ευρώ. In the present thesis we attempted to create a combination of genetic algorithms and neural networks. The proposed methodology was applied to the problem of predicting the exchange rate between EUR/USD and the Greek stock market ASE 20 index. The idea of combining these two techniques for the solving of the above mentioned problems emerged by their innate ability of finding solutions where traditional methods fail. On one hand, neural networks imitate the human brain procedures and on the other, genetic algorithms imitate the physical evolution process. In fact, both techniques copy some of nature’s functions. Artificial neural networks, through educating and generalizing manage to learn a problem and provide solutions to it. Genetic algorithms, through the evolution circle can overcome local minima or maxima and reach global ones. Due to their compact, parallel and distributed format and their ability of learning, neural networks make the solving of complicated problems possible, by dividing them in smaller projects, which are taken over by the neural networks according to their capabilities. Due to the advantages of neural networks and genetic algorithms we created a combination of them to predict the exchange rate between EUR/USD and the Greek stock market ASE 20 index. 2012-01-24T08:37:12Z 2012-01-24T08:37:12Z 2011-10-21 2012-01-24 Thesis http://hdl.handle.net/10889/4952 gr 0 application/pdf
institution UPatras
collection Nemertes
language Greek
topic Νευρωνικά δίκτυα
Γενετικοί αλγόριθμοι
Ισοτιμία EUR/USD
Neural networks
Genetic algorithms
Exchange rate EUR/USD
ASE-20
006.3
spellingShingle Νευρωνικά δίκτυα
Γενετικοί αλγόριθμοι
Ισοτιμία EUR/USD
Neural networks
Genetic algorithms
Exchange rate EUR/USD
ASE-20
006.3
Αμοργιανιώτης, Θωμάς
Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
description Τα πολυεπίπεδα νευρωνικά δίκτυα έχουν εφαρμοστεί στο παρελθόν με μεγάλη επιτυχία στην πρόβλεψη χρονοσειρών από το χώρο της οικονομίας. Στην πράξη όμως παρουσιάζουν διάφορα προβλήματα όπως: Εύρεση του βέλτιστου υποσυνόλου χαρακτηριστικών και χρησιμοποίησή τους σαν εισόδου. Εύρεση της βέλτιστης δομής (επίπεδα κρυφών νευρώνων, αριθμός κρυφών νευρώνων). Εύρεση των βέλτιστων τιμών των παραμέτρων του αλγορίθμου εκπαίδευσης των τεχνητών νευρωνικών δικτύων (παράμετρος μάθησης, παράμετρος ορμής κλπ.) Σκοπός της διπλωματικής αυτής εργασίας είναι η δημιουργίας μιας υβριδικής μεθόδου γενετικών αλγορίθμων και νευρωνικών δικτύων. Ο γενετικός αλγόριθμος θα είναι υπεύθυνος στην εύρεση του βέλτιστου συνδυασμού των παραπάνω προς αναζήτηση παραμέτρων του νευρωνικού δικτύου. Η υβριδική αυτή μέθοδος θα εφαρμοστεί στο πρόβλημα της πρόβλεψης του δείκτη ASE-20 του ελληνικού χρηματιστηρίου καθώς και στο πρόβλημα της πρόβλεψης της ισοτιμίας δολαρίου-Ευρώ.
author2 Λυκοθανάσης, Σπυρίδων
author_facet Λυκοθανάσης, Σπυρίδων
Αμοργιανιώτης, Θωμάς
format Thesis
author Αμοργιανιώτης, Θωμάς
author_sort Αμοργιανιώτης, Θωμάς
title Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
title_short Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
title_full Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
title_fullStr Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
title_full_unstemmed Χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
title_sort χρήση γενετικού αλγόριθμου για βελτιστοποίηση δομής, παραμέτρων τεχνητών νευρωνικών δικτύων και εφαρμογή της υβριδικής μεθόδου σε προβλήματα από τον χώρο της οικονομίας
publishDate 2012
url http://hdl.handle.net/10889/4952
work_keys_str_mv AT amorgianiōtēsthōmas chrēsēgenetikoualgorithmougiabeltistopoiēsēdomēsparametrōntechnētōnneurōnikōndiktyōnkaiepharmogētēsybridikēsmethodouseproblēmataapotonchōrotēsoikonomias
_version_ 1771297175014211584