Διαρμονικές υποπολλαπλότητες της σφαίρας S3

Αντικείμενο της εργασίας αυτής είναι η αναζήτηση των διαρμονικών υποπολλαπλοτήτων της σφαίρας S3. Η μέθοδος που εφαρμόζεται συνδέεται με την αρχή του λογισμού των μεταβολών. Γίνεται σύντομη ανάλυση της μεθοδολογίας του λογισμού των μεταβολών και εφαρμογή αυτής σε γνωστές θεωρίες μεταξύ των οποίων...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Σερεμετάκη, Στέλλα
Άλλοι συγγραφείς: Αρβανιτογέωργος, Ανδρέας
Γλώσσα:Greek
Έκδοση: 2007
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/496
Περιγραφή
Περίληψη:Αντικείμενο της εργασίας αυτής είναι η αναζήτηση των διαρμονικών υποπολλαπλοτήτων της σφαίρας S3. Η μέθοδος που εφαρμόζεται συνδέεται με την αρχή του λογισμού των μεταβολών. Γίνεται σύντομη ανάλυση της μεθοδολογίας του λογισμού των μεταβολών και εφαρμογή αυτής σε γνωστές θεωρίες μεταξύ των οποίων είναι οι αρμονικές και διαρμονικές απεικονίσεις. Ορίζουμε τις έννοιες των αρμονικών και διαρμονικών απεικονίσεων μεταξύ δύο πολλαπλοτήτων Riemann και δίνουμαι παραδείγματα τέτοιων απεικονίσεων. Τέλος, προσδιορίζουμαι τις διαρμονικές καμπύλες και τις διαρμονικές επιφάνειες της σφαίρας S3. Οι κεντρικές μας αναφορές είναι οι εργασίες : (1) Biharmonic submanifolds in spheres, Israel.J.Math.,130(2002), 109-123, των R.Caddeo, S. Montaldo και C .Oniciuic. (2) A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1-68 των J. Eells και L.Lemaire.