Περίληψη: | Οι γενικευμένες συναρτήσεις Bessel (συναρτήσεις Bessel πολλών μεταβλητών και δεικτών) χρησιμοποιούνται ως το βασικό μαθηματικό υπόβαθρο για την απλούστευση πολύπλοκων υπολογισμών σε φαινόμενα όπως της σκέδασης όπου η προσέγγιση του διπόλου δεν μπορεί να εφαρμοσθεί. Επίσης εμφανίζονται σε προβλήματα αλληλεπίδρασης ισχυρών δεσμών laser με ηλεκτρόνια, αλληλεπίδρασης φωτός με ασθενώς δεσμευμένο ηλεκτρόνιο, σε προβλήματα ιονισμού κτλ.
Οι συναρτήσεις αυτές ικανοποιούν αντίστοιχες ιδιότητες (όσον αφορά στη γεννή- τρια συνάρτηση και τις αναδρομικές σχέσεις ) με τις συναρτήσεις Bessel μιας πραγ-
ματικής μεταβλητής και η απόδειξη αυτών των σχέσεων βασίζεται στον ορισμό των γενικευμένων συναρτήσεων Bessel και στις ιδιότητες των συνήθων συναρτήσεων Bessel.
Συγκεκριμένα παρουσιάζονται οι διάφορες γενικεύσεις των συναρτήσεων Bessel ξεκινώντας με αυτές των δύο μεταβλητών και του ενός ακέραιου δείκτη της μορφής
για τις οποίες παραθέτονται η γεννήτρια συνάρτηση, οι αναδρομικές σχέσεις, παράγωγοι ως προς τις 2 μεταβλητές κάθε τάξης, αναπτύγματα τύπου Jacobi – Anger καθώς και σχέσεις σημαντικές για τους αριθμητικούς υπολογισμούς. Η ίδια μελέτη γίνεται και για τις διάφορες τροποποιημένες μορφές των συναρτήσεων καθώς και για τις γενικευμένες συναρτήσεις τριών αλλά και γενικά Μ μεταβλητών.
Επίσης δίνονται αποτελέσματα για τις συναρτήσεις Bessel με περισσότερους από έναν δείκτες όπως οι συναρτήσεις , στην μονοδιάστατη περίπτω-
ση και οι , και στην πολυδιά-στατη. Γίνεται καταγραφή των γενικευμένων μορφών των πολυωνύμων Hermite στις δύο διαστάσεις, των πολυωνύμων Gould – Hopper, των ιδιοτήτων τους καθώς και του τρόπου με τον οποίο συνδέονται με τις γενικευμένες συναρτήσεις Bessel.
Τέλος, στην εργασία, που έχει τον χαρακτήρα της ανασκόπησης παρουσιάζονται και κάποια αποτελέσματα τα οποία αφορούν σε ιδιότητες πολυωνύμων Legendre και Laguerre δύο μεταβλητών.
|