Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων

Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος υποστήριξης της διάγνωσης (Decision Support System - DSS) με χρήση μεθόδων εξόρυξης δεδομένων για την ταξινόμηση επιχρισμάτων βιοψίας με λεπτή βελόνα (Fine Needle Aspiration - FNA). Δύο κατηγορίες επιλέχθηκαν γ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ζούλιας, Εμμανουήλ
Άλλοι συγγραφείς: Ματσόπουλος, Γεώργιος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2012
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/5450
id nemertes-10889-5450
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Σύστημα υποβοήθησης ιατρικών αποφάσεων
Εξόρυξη δεδομένων
Βιοψία θυρεοειδούς δια λεπτής βελόνης
Τεχνητά νευρωνικά δίκτυα
Δέντρα αποφάσεων
Κ-πλησιέστερου γείτονα
Medical decision support system
Data mining
FNA biopsy
Neural networks
Decision trees
k-Nearest neighborhood
Immune systems
Majority vote
Support vector systems
Feature selection
610.285
spellingShingle Σύστημα υποβοήθησης ιατρικών αποφάσεων
Εξόρυξη δεδομένων
Βιοψία θυρεοειδούς δια λεπτής βελόνης
Τεχνητά νευρωνικά δίκτυα
Δέντρα αποφάσεων
Κ-πλησιέστερου γείτονα
Medical decision support system
Data mining
FNA biopsy
Neural networks
Decision trees
k-Nearest neighborhood
Immune systems
Majority vote
Support vector systems
Feature selection
610.285
Ζούλιας, Εμμανουήλ
Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
description Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος υποστήριξης της διάγνωσης (Decision Support System - DSS) με χρήση μεθόδων εξόρυξης δεδομένων για την ταξινόμηση επιχρισμάτων βιοψίας με λεπτή βελόνα (Fine Needle Aspiration - FNA). Δύο κατηγορίες επιλέχθηκαν για τα δείγματα FNA: καλοήθεια και κακοήθεια. Το σύστημα αυτό αποτελείται από τις ακόλουθες βαθμίδες: 1) συλλογής δεδομένων, 2) επιλογής δεδομένων, 3) εύρεσης κατάλληλων χαρακτηριστικών, 4) εφαρμογής ταξινόμησης με χρήση μεθόδων εξόρυξης δεδομένων. Επίσης, βασικός στόχος της παρούσας διδακτορικής διατριβής ήταν η βελτίωση της ορθής ταξινόμησης των ύποπτων επιχρισμάτων (suspicious), για τα οποία είναι γνωστή η αδυναμία της μεθόδου FNA να τα ταξινομήσει. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Για περιπτώσεις οι οποίες χαρακτηρίστηκαν ως μη κακοήθεις από την FNA, και για τις οποίες δεν είχαμε ιστολογικές επιβεβαιώσεις, το δείγμα προέκυψε από την συνεκτίμηση και άλλων κλινικών, εργαστηριακών και απεικονιστικών εξετάσεων. Στα πλαίσια της παρούσας διδακτορικής διατριβής συλλέχθηκαν εξετάσεις FNA θυρεοειδούς από το Εργαστήριο Παθολογοανατομίας του Α’ Τμήματος Παθολογίας της Ιατρικής Σχολής του Πανεπιστημίου Αθηνών. Δεδομένου ότι το εν λόγω εργαστήριο λειτουργεί και σαν κέντρο αναφοράς, σημαντικός αριθμός των δειγμάτων εστάλησαν εκεί και από άλλα Εργαστήρια Παθολογοανατομίας για επανέλεγχο. Το αρχειακό υλικό ήταν πολύ καλά ταξινομημένο σε χρονολογική σειρά αλλά ήταν σε έντυπη μορφή. Αρχικά πραγματοποιήθηκε η ανάλυση απαιτήσεων για τη δομή και το σχεδιασμό της βάσης δεδομένων. Με βάση τα στοιχεία από την τεκμηριωμένη διάγνωση σχεδιάστηκε και αναπτύχθηκε προηγμένο σύστημα για την κωδικοποίηση και αρχικοποίηση των δεδομένων. Με τη βοήθεια του σχεδιασμού και ανάλυσης απαιτήσεων αναπτύχθηκε και υλοποιήθηκε η βάση δεδομένων στην οποία αποθηκεύτηκαν τα δεδομένα προς επεξεργασία. Παράλληλα, με το σχεδιασμό της βάσης έγινε και η προεργασία για το σχεδιασμό και την ανάλυση απαιτήσεων του γραφικού περιβάλλοντος εισαγωγής στοιχείων. Λαμβάνοντας υπόψη ότι το σύστημα θα μπορούσε να χρησιμοποιηθεί και πέρα από τα πλαίσια της παρούσας διδακτορικής διατριβής λήφθηκε μέριμνα ώστε να παρέχεται ένα φιλικό και ευέλικτο προς το χρήστη περιβάλλον. Σύμφωνα με τη μεθοδολογία προσέγγισης η οποία ακολουθήθηκε προηγήθηκε στατιστική ανάλυση των 9.102 συλλεχθέντων δειγμάτων FNA ως προς τα κυτταρολογικά χαρακτηριστικά τους και τις διαγνώσεις. Οι κυτταρολογικές διαγνώσεις των συγκεκριμένων δειγμάτων συσχετίστηκαν με τις ιστολογικές διαγνώσεις, στοχεύοντας στον υπολογισμό της πιθανής επίδρασης και συμβολής κάθε κυτταρολογικού χαρακτηριστικού σε μια ορθή ή ψευδή κυτταρολογική διάγνωση, έτσι ώστε να προσδιοριστούν οι πιθανές πηγές λανθασμένης διάγνωσης. Τα δείγματα τα οποία περιείχαν μόνο αίμα ή πολύ λίγα θυλακειώδη κύτταρα χωρίς κολλοειδές θεωρήθηκαν ανεπαρκή για τη διάγνωση. Οι βιοψίες εκτελέσθηκαν είτε στο Α’ τμήμα του Πανεπιστημίου Αθηνών (οι περισσότερες από τις περιπτώσεις με ψηλαφητούς όζους) είτε αλλού (κυρίως κάτω από την καθοδήγηση του κέντρου αναφοράς). Τα δείγματα επιστρωμένα σε πλακάκια, στάλθηκαν στο κέντρο αναφοράς από διάφορα νοσοκομεία, με διαφορετικά πρωτόκολλα σχετικά με τα κριτήρια εκτέλεσης βιοψίας FNA σε θυρεοειδή. Μετεγχειρητικές ιστολογικές επαληθεύσεις ήταν διαθέσιμες για 266 ασθενείς (κακοήθειες και μη). Το χαμηλό ποσοστό ιστολογικών επαληθεύσεων οφείλεται στην ετερογενή προέλευση των ασθενών και στην έλλειψη ολοκληρωμένης παρακολούθησης και επανελέγχου των ασθενών. Για την αξιολόγηση των δεδομένων χρησιμοποιήθηκαν περιγραφικά στατιστικά μεγέθη όπως, μέση τιμή, τυπική απόκλιση, ποσοστά, μέγιστο και ελάχιστο. Έγιναν επίσης και χ2 δοκιμές επιπέδου σημαντικότητας διαφόρων παραμέτρων για να ελεγχθεί η πιθανή συσχέτιση ή η ανεξαρτησία. Για τη συσχέτιση των κυτταρολογικών και των ιστολογικών διαγνώσεων και την αξιολόγηση των εργαστηριακών ευρημάτων, πέραν των περιγραφικών στατιστικών μεγεθών χρησιμοποιήθηκαν και υπολογισμοί της ευαισθησίας, της ειδικότητας, της συνολικής ακρίβειας, της αρνητικής και θετικής αξίας πρόβλεψης (negative and positive predictive value). Προκειμένου να καθοριστεί εάν μια κατηγορία ασθενειών συσχετίζεται ή όχι με συγκεκριμένες κυτταρολογικές παραμέτρους εφαρμόστηκε μέθοδος ελέγχου στατιστικής σημαντικότητας σε επίπεδο 5% (p < 0,05). Η διαδικασία ακολουθήθηκε για κάθε κατηγορία ασθενειών ή συνδυασμό τους και για κάθε παράμετρο των κυτταρολογικών και αρχιτεκτονικών στοιχείων της κυτταρολογικής διάγνωσης. Τα αποτελέσματα της στατιστικής ανάλυσης επέτρεψαν το διαχωρισμό των δεδομένων σε καλοήθη, κακοήθη, νεοπλασματικά, ύποπτα για κακοήθεια και οριακά με χαρακτηριστικά γνωρίσματα μεταξύ ενός καλοήθους και ενός νεοπλασματικού. Στην συνέχεια αναπτύχθηκε σύστημα υποστήριξης της διάγνωσης χρησιμοποιώντας εξειδικευμένες μεθόδους εξόρυξης δεδομένων. Το σύστημα αποτελείται από τέσσερις βαθμίδες. Η πρώτη βαθμίδα αυτού του συστήματος είναι το περιβάλλον Συλλογής Δεδομένων στην οποία τα δεδομένα αποθηκεύονται στη βάση δεδομένων. Η Δεύτερη Βαθμίδα αυτού του συστήματος αφορά στην Επιλογή Δεδομένων. Σύμφωνα με την καταγραφή των απαιτήσεων, την εισαγωγή και τη ψηφιοποίηση των στοιχείων, δημιουργήθηκαν 111 χαρακτηριστικά για κάθε ασθενή (record). Τα περισσότερα χαρακτηριστικά είχαν τιμές δυαδικού τύπου, αποτυπώνοντας την ύπαρξη ή μη του κάθε χαρακτηριστικού, ενώ κάποιες άλλες είχαν τιμές τύπων αριθμών ή αλφαριθμητικών χαρακτήρων. Από τα 111 χαρακτηριστικά επιλέχθηκαν 60 χαρακτηριστικά τα οποία περιγράφουν τη δομή των επιχρισμάτων ενώ δημιουργήθηκαν άλλα 7 χαρακτηριστικά τα οποία αφορούσαν στην ομαδοποίηση άλλων χαρακτηριστικών. Η Τρίτη Βαθμίδα του συστήματος αφορά στην εύρεση των Κατάλληλων Χαρακτηριστικών. Λόγω του αρχικά υψηλού αριθμού χαρακτηριστικών παραμέτρων (67 ανά περίπτωση), ήταν απαραίτητο να εξαλειφθούν οι χαρακτηριστικές παράμετροι που συσχετίζονταν γραμμικά ή δεν είχαν καμία διαγνωστική πληροφορία. H μέθοδος επιλογής χαρακτηριστικών εφαρμόστηκε πριν από την ταξινόμηση, με γνώμονα την ανεύρεση ενός υποσυνόλου των χαρακτηριστικών παραμέτρων που βελτιστοποιούν σε ακρίβεια τη διαδικασία ταξινόμησης. Εφαρμόστηκε η τεχνική επιπλέουσας πρόσθιας ακολουθιακά μεταβαλλόμενης επιλογής (SFFS). Ο αριθμός των δειγμάτων που χρησιμοποιήθηκαν είναι 2.036 (1.886 καλοήθειες και 150 κακοήθειες). Εξ αυτών, όλες οι κακοήθειες είναι ιστολογικά επιβεβαιωμένες. Επίσης, 140 καλοήθειες είναι ιστολογικά επιβεβαιωμένες με επάρκεια υλικού. Οι υπόλοιπες 1.726 καλοήθειες είναι επιβεβαιωμένες με συνεκτίμηση κλινικών, εργαστηριακών και απεικονιστικών ιατρικών εξετάσεων (υπέρηχοι κ.λπ.). Από τα 2.036 δείγματα, το 25% χρησιμοποιήθηκε για την επιλογή χαρακτηριστικών παραμέτρων, δηλαδή 37 περιπτώσεις κακοήθειας (Malignant) και 472 περιπτώσεις καλοήθειας (Non Malignant). Από την εφαρμογή της τεχνικής (SFFS) επιλέχθηκαν τελικά 12 χαρακτηριστικά ως βέλτιστα για την ταξινόμηση των δεδομένων FNA σε καλοήθη και κακοήθη. Η Τέταρτη βαθμίδα επεξεργασίας είναι η Εφαρμογής Ταξινόμησης με χρήση Μεθόδων Εξόρυξης Δεδομένων ή Ταξινομητής. Για το σκοπό αυτό, επιλέχθηκε να εφαρμοστεί μια πληθώρα αξιόπιστων, καλά επιβεβαιωμένων και σύγχρονων μεθόδων εξόρυξης δεδομένων. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Η ανεξάρτητη εφαρμογή τεσσάρων αξιόπιστων μεθόδων, Δέντρων Αποφάσεων (Decision Trees), Τεχνιτών Νευρωνικών Δικτύων (Artificial Neural Network), Μηχανών Στήριξης Διανυσμάτων (Support Vector Machine), και Κ - κοντινότερου γείτονα (k-NN), έδωσε αποτελέσματα συγκρίσιμα με αυτά της FNA μεθόδου. Περαιτέρω βελτίωση των αποτελεσμάτων επιτεύχθηκε με την εφαρμογή της μεθόδου πλειοψηφικού κανόνα (Majority Vote - CMV) συνδυάζοντας τα αποτελέσματα από την εφαρμογή των τριών καλύτερων αλγορίθμων, ήτοι των Νευρωνικών Δικτύων, Μηχανών Στήριξης Διανυσμάτων και Κ - κοντινότερου γείτονα. Η τροποποιημένη μέθοδος τεχνητών αυτοάνοσων συστημάτων (Artificial Immune Systems – AIS) χρησιμοποιήθηκε για πρώτη φορά στην ταξινόμηση και παρουσίασε ιδιαίτερα βελτιωμένα αποτελέσματα στην ταξινόμηση των επιχρισμάτων τα οποία χαρακτηρίζονται ύποπτα (suspicious) από τους ειδικούς και αποτελούν το αδύναμο σημείο της μεθόδου FNA. Αυτές οι περιπτώσεις υπόνοιας αποτελούν ένα πολύ δύσκολο κομμάτι για τη διάκριση μεταξύ των καλοηθειών και των κακοηθειών, ακόμα και για τους πλέον ειδικούς. Επειδή όλα τα περιστατικά που χαρακτηρίζονται από την βιοψία FNA ως υπόνοιες αντιμετωπίζονται κλινικά σαν κακοήθειες, η εφαρμογή των αλγοριθμικών μεθόδων βελτιώνει αισθητά τη διαχείριση αυτών των περιπτώσεων μειώνοντας τον αριθμό των άσκοπων χειρουργικών επεμβάσεων θυρεοειδεκτομών.
author2 Ματσόπουλος, Γεώργιος
author_facet Ματσόπουλος, Γεώργιος
Ζούλιας, Εμμανουήλ
format Thesis
author Ζούλιας, Εμμανουήλ
author_sort Ζούλιας, Εμμανουήλ
title Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
title_short Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
title_full Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
title_fullStr Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
title_full_unstemmed Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
title_sort σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη fna με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων
publishDate 2012
url http://hdl.handle.net/10889/5450
work_keys_str_mv AT zouliasemmanouēl schediasmosanaptyxēkaiepharmogēsystēmatosypostērixēstēsdiagnōsēsepichrismatōnthyreoeidousdedomenōnbiopsiasmeleptēbelonēfnamechrēsēexeligmenōnmethodōnexoryxēsdedomenōn
_version_ 1771297138008915968
spelling nemertes-10889-54502022-09-05T04:59:20Z Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων Ζούλιας, Εμμανουήλ Ματσόπουλος, Γεώργιος Τσελένη – Μπαλαφούτα, Σοφία Ουζούνογλου, Νικόλαος Κουτσούρης, Δημήτριος – Διονύσιος Σταφυλοπάτης, Ανδρέας – Γεώργιος Σιέττος, Κωνσταντίνος Βεντούρας, Ερρίκος Zoulias, Emmanouil Σύστημα υποβοήθησης ιατρικών αποφάσεων Εξόρυξη δεδομένων Βιοψία θυρεοειδούς δια λεπτής βελόνης Τεχνητά νευρωνικά δίκτυα Δέντρα αποφάσεων Κ-πλησιέστερου γείτονα Medical decision support system Data mining FNA biopsy Neural networks Decision trees k-Nearest neighborhood Immune systems Majority vote Support vector systems Feature selection 610.285 Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος υποστήριξης της διάγνωσης (Decision Support System - DSS) με χρήση μεθόδων εξόρυξης δεδομένων για την ταξινόμηση επιχρισμάτων βιοψίας με λεπτή βελόνα (Fine Needle Aspiration - FNA). Δύο κατηγορίες επιλέχθηκαν για τα δείγματα FNA: καλοήθεια και κακοήθεια. Το σύστημα αυτό αποτελείται από τις ακόλουθες βαθμίδες: 1) συλλογής δεδομένων, 2) επιλογής δεδομένων, 3) εύρεσης κατάλληλων χαρακτηριστικών, 4) εφαρμογής ταξινόμησης με χρήση μεθόδων εξόρυξης δεδομένων. Επίσης, βασικός στόχος της παρούσας διδακτορικής διατριβής ήταν η βελτίωση της ορθής ταξινόμησης των ύποπτων επιχρισμάτων (suspicious), για τα οποία είναι γνωστή η αδυναμία της μεθόδου FNA να τα ταξινομήσει. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Για περιπτώσεις οι οποίες χαρακτηρίστηκαν ως μη κακοήθεις από την FNA, και για τις οποίες δεν είχαμε ιστολογικές επιβεβαιώσεις, το δείγμα προέκυψε από την συνεκτίμηση και άλλων κλινικών, εργαστηριακών και απεικονιστικών εξετάσεων. Στα πλαίσια της παρούσας διδακτορικής διατριβής συλλέχθηκαν εξετάσεις FNA θυρεοειδούς από το Εργαστήριο Παθολογοανατομίας του Α’ Τμήματος Παθολογίας της Ιατρικής Σχολής του Πανεπιστημίου Αθηνών. Δεδομένου ότι το εν λόγω εργαστήριο λειτουργεί και σαν κέντρο αναφοράς, σημαντικός αριθμός των δειγμάτων εστάλησαν εκεί και από άλλα Εργαστήρια Παθολογοανατομίας για επανέλεγχο. Το αρχειακό υλικό ήταν πολύ καλά ταξινομημένο σε χρονολογική σειρά αλλά ήταν σε έντυπη μορφή. Αρχικά πραγματοποιήθηκε η ανάλυση απαιτήσεων για τη δομή και το σχεδιασμό της βάσης δεδομένων. Με βάση τα στοιχεία από την τεκμηριωμένη διάγνωση σχεδιάστηκε και αναπτύχθηκε προηγμένο σύστημα για την κωδικοποίηση και αρχικοποίηση των δεδομένων. Με τη βοήθεια του σχεδιασμού και ανάλυσης απαιτήσεων αναπτύχθηκε και υλοποιήθηκε η βάση δεδομένων στην οποία αποθηκεύτηκαν τα δεδομένα προς επεξεργασία. Παράλληλα, με το σχεδιασμό της βάσης έγινε και η προεργασία για το σχεδιασμό και την ανάλυση απαιτήσεων του γραφικού περιβάλλοντος εισαγωγής στοιχείων. Λαμβάνοντας υπόψη ότι το σύστημα θα μπορούσε να χρησιμοποιηθεί και πέρα από τα πλαίσια της παρούσας διδακτορικής διατριβής λήφθηκε μέριμνα ώστε να παρέχεται ένα φιλικό και ευέλικτο προς το χρήστη περιβάλλον. Σύμφωνα με τη μεθοδολογία προσέγγισης η οποία ακολουθήθηκε προηγήθηκε στατιστική ανάλυση των 9.102 συλλεχθέντων δειγμάτων FNA ως προς τα κυτταρολογικά χαρακτηριστικά τους και τις διαγνώσεις. Οι κυτταρολογικές διαγνώσεις των συγκεκριμένων δειγμάτων συσχετίστηκαν με τις ιστολογικές διαγνώσεις, στοχεύοντας στον υπολογισμό της πιθανής επίδρασης και συμβολής κάθε κυτταρολογικού χαρακτηριστικού σε μια ορθή ή ψευδή κυτταρολογική διάγνωση, έτσι ώστε να προσδιοριστούν οι πιθανές πηγές λανθασμένης διάγνωσης. Τα δείγματα τα οποία περιείχαν μόνο αίμα ή πολύ λίγα θυλακειώδη κύτταρα χωρίς κολλοειδές θεωρήθηκαν ανεπαρκή για τη διάγνωση. Οι βιοψίες εκτελέσθηκαν είτε στο Α’ τμήμα του Πανεπιστημίου Αθηνών (οι περισσότερες από τις περιπτώσεις με ψηλαφητούς όζους) είτε αλλού (κυρίως κάτω από την καθοδήγηση του κέντρου αναφοράς). Τα δείγματα επιστρωμένα σε πλακάκια, στάλθηκαν στο κέντρο αναφοράς από διάφορα νοσοκομεία, με διαφορετικά πρωτόκολλα σχετικά με τα κριτήρια εκτέλεσης βιοψίας FNA σε θυρεοειδή. Μετεγχειρητικές ιστολογικές επαληθεύσεις ήταν διαθέσιμες για 266 ασθενείς (κακοήθειες και μη). Το χαμηλό ποσοστό ιστολογικών επαληθεύσεων οφείλεται στην ετερογενή προέλευση των ασθενών και στην έλλειψη ολοκληρωμένης παρακολούθησης και επανελέγχου των ασθενών. Για την αξιολόγηση των δεδομένων χρησιμοποιήθηκαν περιγραφικά στατιστικά μεγέθη όπως, μέση τιμή, τυπική απόκλιση, ποσοστά, μέγιστο και ελάχιστο. Έγιναν επίσης και χ2 δοκιμές επιπέδου σημαντικότητας διαφόρων παραμέτρων για να ελεγχθεί η πιθανή συσχέτιση ή η ανεξαρτησία. Για τη συσχέτιση των κυτταρολογικών και των ιστολογικών διαγνώσεων και την αξιολόγηση των εργαστηριακών ευρημάτων, πέραν των περιγραφικών στατιστικών μεγεθών χρησιμοποιήθηκαν και υπολογισμοί της ευαισθησίας, της ειδικότητας, της συνολικής ακρίβειας, της αρνητικής και θετικής αξίας πρόβλεψης (negative and positive predictive value). Προκειμένου να καθοριστεί εάν μια κατηγορία ασθενειών συσχετίζεται ή όχι με συγκεκριμένες κυτταρολογικές παραμέτρους εφαρμόστηκε μέθοδος ελέγχου στατιστικής σημαντικότητας σε επίπεδο 5% (p < 0,05). Η διαδικασία ακολουθήθηκε για κάθε κατηγορία ασθενειών ή συνδυασμό τους και για κάθε παράμετρο των κυτταρολογικών και αρχιτεκτονικών στοιχείων της κυτταρολογικής διάγνωσης. Τα αποτελέσματα της στατιστικής ανάλυσης επέτρεψαν το διαχωρισμό των δεδομένων σε καλοήθη, κακοήθη, νεοπλασματικά, ύποπτα για κακοήθεια και οριακά με χαρακτηριστικά γνωρίσματα μεταξύ ενός καλοήθους και ενός νεοπλασματικού. Στην συνέχεια αναπτύχθηκε σύστημα υποστήριξης της διάγνωσης χρησιμοποιώντας εξειδικευμένες μεθόδους εξόρυξης δεδομένων. Το σύστημα αποτελείται από τέσσερις βαθμίδες. Η πρώτη βαθμίδα αυτού του συστήματος είναι το περιβάλλον Συλλογής Δεδομένων στην οποία τα δεδομένα αποθηκεύονται στη βάση δεδομένων. Η Δεύτερη Βαθμίδα αυτού του συστήματος αφορά στην Επιλογή Δεδομένων. Σύμφωνα με την καταγραφή των απαιτήσεων, την εισαγωγή και τη ψηφιοποίηση των στοιχείων, δημιουργήθηκαν 111 χαρακτηριστικά για κάθε ασθενή (record). Τα περισσότερα χαρακτηριστικά είχαν τιμές δυαδικού τύπου, αποτυπώνοντας την ύπαρξη ή μη του κάθε χαρακτηριστικού, ενώ κάποιες άλλες είχαν τιμές τύπων αριθμών ή αλφαριθμητικών χαρακτήρων. Από τα 111 χαρακτηριστικά επιλέχθηκαν 60 χαρακτηριστικά τα οποία περιγράφουν τη δομή των επιχρισμάτων ενώ δημιουργήθηκαν άλλα 7 χαρακτηριστικά τα οποία αφορούσαν στην ομαδοποίηση άλλων χαρακτηριστικών. Η Τρίτη Βαθμίδα του συστήματος αφορά στην εύρεση των Κατάλληλων Χαρακτηριστικών. Λόγω του αρχικά υψηλού αριθμού χαρακτηριστικών παραμέτρων (67 ανά περίπτωση), ήταν απαραίτητο να εξαλειφθούν οι χαρακτηριστικές παράμετροι που συσχετίζονταν γραμμικά ή δεν είχαν καμία διαγνωστική πληροφορία. H μέθοδος επιλογής χαρακτηριστικών εφαρμόστηκε πριν από την ταξινόμηση, με γνώμονα την ανεύρεση ενός υποσυνόλου των χαρακτηριστικών παραμέτρων που βελτιστοποιούν σε ακρίβεια τη διαδικασία ταξινόμησης. Εφαρμόστηκε η τεχνική επιπλέουσας πρόσθιας ακολουθιακά μεταβαλλόμενης επιλογής (SFFS). Ο αριθμός των δειγμάτων που χρησιμοποιήθηκαν είναι 2.036 (1.886 καλοήθειες και 150 κακοήθειες). Εξ αυτών, όλες οι κακοήθειες είναι ιστολογικά επιβεβαιωμένες. Επίσης, 140 καλοήθειες είναι ιστολογικά επιβεβαιωμένες με επάρκεια υλικού. Οι υπόλοιπες 1.726 καλοήθειες είναι επιβεβαιωμένες με συνεκτίμηση κλινικών, εργαστηριακών και απεικονιστικών ιατρικών εξετάσεων (υπέρηχοι κ.λπ.). Από τα 2.036 δείγματα, το 25% χρησιμοποιήθηκε για την επιλογή χαρακτηριστικών παραμέτρων, δηλαδή 37 περιπτώσεις κακοήθειας (Malignant) και 472 περιπτώσεις καλοήθειας (Non Malignant). Από την εφαρμογή της τεχνικής (SFFS) επιλέχθηκαν τελικά 12 χαρακτηριστικά ως βέλτιστα για την ταξινόμηση των δεδομένων FNA σε καλοήθη και κακοήθη. Η Τέταρτη βαθμίδα επεξεργασίας είναι η Εφαρμογής Ταξινόμησης με χρήση Μεθόδων Εξόρυξης Δεδομένων ή Ταξινομητής. Για το σκοπό αυτό, επιλέχθηκε να εφαρμοστεί μια πληθώρα αξιόπιστων, καλά επιβεβαιωμένων και σύγχρονων μεθόδων εξόρυξης δεδομένων. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Η ανεξάρτητη εφαρμογή τεσσάρων αξιόπιστων μεθόδων, Δέντρων Αποφάσεων (Decision Trees), Τεχνιτών Νευρωνικών Δικτύων (Artificial Neural Network), Μηχανών Στήριξης Διανυσμάτων (Support Vector Machine), και Κ - κοντινότερου γείτονα (k-NN), έδωσε αποτελέσματα συγκρίσιμα με αυτά της FNA μεθόδου. Περαιτέρω βελτίωση των αποτελεσμάτων επιτεύχθηκε με την εφαρμογή της μεθόδου πλειοψηφικού κανόνα (Majority Vote - CMV) συνδυάζοντας τα αποτελέσματα από την εφαρμογή των τριών καλύτερων αλγορίθμων, ήτοι των Νευρωνικών Δικτύων, Μηχανών Στήριξης Διανυσμάτων και Κ - κοντινότερου γείτονα. Η τροποποιημένη μέθοδος τεχνητών αυτοάνοσων συστημάτων (Artificial Immune Systems – AIS) χρησιμοποιήθηκε για πρώτη φορά στην ταξινόμηση και παρουσίασε ιδιαίτερα βελτιωμένα αποτελέσματα στην ταξινόμηση των επιχρισμάτων τα οποία χαρακτηρίζονται ύποπτα (suspicious) από τους ειδικούς και αποτελούν το αδύναμο σημείο της μεθόδου FNA. Αυτές οι περιπτώσεις υπόνοιας αποτελούν ένα πολύ δύσκολο κομμάτι για τη διάκριση μεταξύ των καλοηθειών και των κακοηθειών, ακόμα και για τους πλέον ειδικούς. Επειδή όλα τα περιστατικά που χαρακτηρίζονται από την βιοψία FNA ως υπόνοιες αντιμετωπίζονται κλινικά σαν κακοήθειες, η εφαρμογή των αλγοριθμικών μεθόδων βελτιώνει αισθητά τη διαχείριση αυτών των περιπτώσεων μειώνοντας τον αριθμό των άσκοπων χειρουργικών επεμβάσεων θυρεοειδεκτομών. The Aim of present thesis is the development of an integrated system for supporting diagnosis (Decision Support System - DSS) using for categorizing FNA biopsy smears. Two categories were selected for the FNA smears: malignant and nonmalignant. The system is constituted by the following stages of 1) data collection, 2) data selection 3) choice of suitable clinical and cytological features, 4) application of data mining method for the categorization of FNA biopsy smears. Furthermore a fundamental objective of the doctoral thesis was the improvement of suspect smears (suspicious) categorization, for the latter FNA Biopsy has a known restriction. The system had been trained and checked in relation to the sample that histologic evaluation existed (ground truth). For smears that characterized as nonmalignant by FNA and histological data we’re not available, complementary clinical, laboratory and imaging evaluations took into account in order to create the sample. Τhe smears that were available in this thesis, were collected from FNA biopsies in Pathologoanatomy Laboratory, A’ Pathology Department, Medical School of Athens University. Given that the above referred laboratory is a reference center, an important number of FNA smears were sent to it from other laboratories for cross check. The examination files were sorted in chronological order, but there were in paper forms. The requirements for the formation and the design of database system were collected. Based on the material of the diagnosis an improved system was designed and developed for data initialization and coding. The database was developed based on the design and analysis of requirements; in this database data were stored for further investigation. Analysis of the graphical user interface design was performed in parallel to the database design. Taking into account that the system might be used after the completion of thesis, the graphical user interface was designed in order to be user friendly and flexible environment. According to the methodological approach that was followed, the various cytological characteristic of 9102 FNA smears aspired among 2000-2004 was analyzed statistically. The cytological reports cross correlated with histological diagnoses, aiming to calculate the effect or contribution of each cytological characteristic to a false or true cytological diagnosis and to find the possible sources of erroneous diagnosis. The smears that have blood or a few follicular cells without colloid were characterized as insufficient for further diagnosis. The aspiration was performed either in Α’ department of Athens University (most of the cases with palpable nodules) or elsewhere (mainly under guidance of the reference center). The acquired smears being send to the reference center from various hospitals with different protocols concerning criteria to perform a thyroid FNA. Histological reports were available for 266 patients. The small number of histological verifications was due to the heterogeneity and the lack of patients files. For evaluating of data, descriptive statistic values were used like mean, standard deviation, percentage, maximum and minimum. In addition to that χ2 tests of significance were performed in order to check possible correlation or independence. For correlating cytological and histological diagnosis and evaluating laboratory findings, apart from the descriptive statistic parameters also calculated sensitivity, specificity, total accuracy, negative predictive value and positive predictive value. Method of statistical significance in the level of 5% (p < 0,05) was applied in order to specify if a disease was correlated to a cytological parameter. Those checks were performed for each disease category in correlation to any cytological parameter. Statistical analysis divided the smears into nonmalignant, malignant, neoplasms, suspicious for malignancy and borderline. A diagnosis support system was implemented using data mining methods. The system is consisted of four stages. The First stage of the system is the Data Collection environment, which stores the data to the database. The Second stage of this system concerns the Selection of Data. User requirements concluded that 111 characteristics are needed to describe each patient (record). Most of them have binary values, presenting existence and not existence, other have alphanumeric and number values. Among them 60 were selected and 7 more are produced from grouping other characteristics. The final analysis reveals that 67 characteristics of the smears are capable for describing the structure of smears in general. The Third stage of system concerns the Selection of Best Characteristics. Due to the high number of attributes (67 per case), it was essential to eliminate the characteristics that are connected linearly or do not bring diagnostics information. The choice of characteristics applied before the classification, having the aim of discovering a subset of characteristics that optimizes the process of classification. The technique of Sequential Float Forward Search (SFFS) was applied. The number of patients that used was 2,036 (1886 non malignancies and 150 malignancies). Among them all malignancies were histologically confirmed. In addition to that 140 no malignancies were histologically confirmed in correlation to evaluation of clinics, laboratorial and medical image actions (ultrasounds etc.). Among 2.036 smears the 25% used for characteristics selection, 37 smears of Malignant and smears of Non Malignant. The Sequential Float Forward Search (SFFS) Technique, choose the best 12 elements that they reveal high performance to FNA data categorization. The Fourth stage is the Application of Classification using Data Mining Methods or in other words data mining method. For this aim a set of reliable, well confirmed but also modern methods applied. In addition to that the system was trained and was checked using the sample with histological verifications (ground truth). The independent application of four reliable methods, Decision Trees, Artificial Neural Network, Support Vector Machine, and k-NN, resulting to comparable outcomes concerning those of FNA. However, further improvement was achieved with the application of Majority (Majority Vote - CMV) using of previous results of three algorithms Artificial Neural Network, Support Vector Machine, and k-NN. The modified Artificial Immune System (AIS) was applied for first time. AIS presents particularly improved results for the categorization of smears, which are characterised “suspicious” by the experts and is a known weakness of FNA method. These cases constitute a very difficult part for the discrimination among non-malignant and malignant, even for a specialist. Since all these cases are faced clinically using FNA as malignancies, the application of an improved algorithmic method improves accordingly the management of these cases by decreasing the number of useless surgical thyroid operations. 2012-09-17T06:44:16Z 2012-09-17T06:44:16Z 2012-03-08 2012-09-17 Thesis http://hdl.handle.net/10889/5450 gr Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf