Περίληψη: | Η παρούσα διδακτορική διατριβή πραγματεύεται το θέμα της εκπαίδευσης εμπρόσθιων τροφοδοτούμενων τεχνητών νευρωνικών δικτύων και τις εφαρμογές τους. Η παρουσίαση των θεμάτων και των αποτελεσμάτων της διατριβής οργανώνεται ως εξής:
Στο Κεφάλαιο 1 παρουσιάζονται τα τεχνητά νευρωνικά δίκτυα , τα οφέλη της χρήσης τους, η δομή και η λειτουργία τους. Πιο συγκεκριμένα, παρουσιάζεται πως από τους βιολογικούς νευρώνες μοντελοποιούνται οι τεχνητοί νευρώνες, που αποτελούν το θεμελιώδες στοιχείο των τεχνητών νευρωνικών δικτύων. Στη συνέχεια αναφέρονται οι βασικές αρχιτεκτονικές των εμπρόσθιων τροφοδοτούμενων τεχνητών νευρωνικών δικτύων. Το κεφάλαιο ολοκληρώνεται με μια ιστορική αναδρομή για τα τεχνητά νευρωνικά δίκτυα και με την παρουσίαση κάποιων εφαρμογών τους.
Στο Κεφάλαιο 2 παρουσιάζονται μερικοί από τους υπάρχοντες αλγορίθμους εκπαίδευσης τεχνητών νευρωνικών δικτύων. Γίνεται μια περιληπτική αναφορά του προβλήματος της εκπαίδευσης των τεχνητών νευρωνικών δικτύων με επίβλεψη και δίνεται η μαθηματική μοντελοποίηση που αντιστοιχεί στην ελαχιστοποίηση του κόστους. Στην συνέχεια γίνεται μια περιληπτική αναφορά στις μεθόδους που βασίζονται στην κατεύθυνση της πιο απότομης καθόδου, στις μεθόδους δευτέρας τάξεως όπου απαιτείται ο υπολογισμός του Εσσιανού πίνακα της συνάρτησης κόστους, στις μεθόδους μεταβλητής μετρικής, και στις μεθόδους συζυγών κλίσεων. Κατόπιν, παρουσιάζεται ο χώρος των βαρών, η επιφάνεια σφάλματος και οι διάφορες τεχνικές αρχικοποίησης των βαρών των τεχνητών νευρωνικών δικτύων και περιγράφονται οι επιπτώσεις που έχουν στην εκπαίδευση τους.
Στο Κεφάλαιο 3 παρουσιάζεται ένας νέος αλγόριθμος εκπαίδευσης τεχνητών νευρωνικών δικτύων βασισμένος στον αλγόριθμο της οπισθοδιάδοσης του σφάλματος και στην αυτόματη προσαρμογή του ρυθμού εκπαίδευσης χρησιμοποιώντας πληροφορία δυο σημείων. Η κατεύθυνση αναζήτησης του νέου αλγορίθμου είναι η κατεύθυνση της πιο απότομης καθόδου, αλλά για τον προσδιορισμό του ρυθμού εκπαίδευσης χρησιμοποιούνται προσεγγίσεις δυο σημείων της εξίσωσης χορδής των μεθόδων ψεύδο-Newton. Επιπλέον, παράγεται ένας νέος ρυθμός εκπαίδευσης προσεγγίζοντας την νέα εξίσωση χορδής, που προτάθηκε από τον Zhang, η οποία χρησιμοποιεί πληροφορία παραγώγων και συναρτησιακών τιμών. Στη συνέχεια, ένας κατάλληλος μηχανισμός επιλογής του ρυθμού εκπαίδευσης ενσωματώνεται στον αλγόριθμο εκπαίδευσης ώστε να επιλέγεται κάθε φορά ο κατάλληλος ρυθμός εκπαίδευσης. Τέλος, γίνεται μελέτη της σύγκλισης του αλγορίθμου εκπαίδευσης και παρουσιάζονται τα πειραματικά αποτελέσματα για διάφορα προβλήματα εκπαίδευσης.
Στο Κεφάλαιο 4 παρουσιάζονται μερικοί αποτελεσματικοί αλγόριθμοι εκπαίδευσης οι οποίοι βασίζονται στις μεθόδους βελτιστοποίησης συζυγών κλίσεων. Στους υπάρχοντες αλγόριθμους εκπαίδευσης συζυγών κλίσεων προστίθεται ένας αλγόριθμος εκπαίδευσης που βασίζεται στη μέθοδο συζυγών κλίσεων του Perry. Επιπρόσθετα, προτείνονται νέοι αλγόριθμοι συζυγών κλίσεων που προκύπτουν από τις ίδιες αρχές που προέρχονται οι γνωστοί αλγόριθμοι συζυγών κλίσεων των Hestenes-Stiefel, Fletcher-Reeves, Polak-Ribiere και Perry, και ονομάζονται κλιμακωτοί αλγόριθμοι συζυγών κλίσεων. Αυτή η κατηγορία αλγορίθμων βασίζεται στην φασματική παράμετρο κλιμάκωσης του προτάθηκε από τους Barzilai και Borwein. Επιπλέον, ενσωματώνεται στους αλγόριθμους εκπαίδευσης συζυγών κλίσεων μια αποδοτική τεχνική γραμμικής αναζήτησης, που βασίζεται στις συνθήκες του Wolfe και στην διασφαλισμένη κυβική παρεμβολή. Ακόμη, η παράμετρος του αρχικού ρυθμού εκπαίδευσης προσαρμόζεται αυτόματα σε κάθε επανάληψη σύμφωνα με ένα κλειστό τύπο. Στη συνέχεια, εφαρμόζεται μια αποτελεσματική διαδικασία επανεκκίνησης, έτσι ώστε να βελτιωθούν περαιτέρω οι αλγόριθμοι εκπαίδευσης συζυγών κλίσεων και να αποδειχθεί η ολική τους σύγκλιση. Τέλος, παρουσιάζονται τα πειραματικά αποτελέσματα για διάφορα προβλήματα εκπαίδευσης.
Στο τελευταίο Κεφάλαιο της παρούσας διδακτορικής διατριβής, απομονώνεται και τροποποιείται ο κλιμακωτός αλγόριθμος του Perry, που παρουσιάστηκε στο προηγούμενο κεφάλαιο. Πιο συγκεκριμένα, ενώ διατηρούνται τα κύρια χαρακτηριστικά του αλγορίθμου εκπαίδευσης, εφαρμόζεται μια διαφορετική τεχνική γραμμικής αναζήτησης η οποία βασίζεται στις μη μονότονες συνθήκες του Wolfe. Επίσης προτείνεται ένας νέος αρχικός ρυθμός εκπαίδευσης για χρήση με τον κλιμακωτό αλγόριθμο εκπαίδευσης συζυγών κλίσεων, ο οποίος φαίνεται να είναι αποδοτικότερος από τον αρχικό ρυθμό εκπαίδευσης που προτάθηκε από τον Shanno όταν χρησιμοποιείται σε συνδυασμό με την μη μονότονη τεχνική γραμμικής αναζήτησης. Στη συνέχεια παρουσιάζονται τα πειραματικά αποτελέσματα για διάφορα προβλήματα εκπαίδευσης. Τέλος, ως εφαρμογή εκπαιδεύεται ένα πολυεπίπεδο εμπρόσθια τροφοδοτούμενο τεχνητό νευρωνικό δίκτυο με τον προτεινόμενο αλγόριθμο για το πρόβλημα της ταξινόμησης καρκινικών κυττάρων του εγκεφάλου και συγκρίνεται η απόδοση του με την απόδοση ενός πιθανοτικού τεχνητού νευρωνικού δικτύου.
Η διατριβή ολοκληρώνεται με το Παράρτημα Α’, όπου παρουσιάζονται τα προβλήματα εκπαίδευσης τεχνητών νευρωνικών δικτύων που χρησιμοποιήθηκαν για την αξιολόγηση των προτεινόμενων αλγορίθμων εκπαίδευσης.
|