Περίληψη: | Στη παρούσα εργασία ασχοληθήκαμε με ιδιότητες μονοτονίας των Τροποποιημένων συναρτήσεων Bessel 1ου και 2ου είδους. Συγκεκριμένα ομαδοποιήσαμε ήδη υπάρχοντα φράγματα για τα κλάσματα των συναρτήσεων αυτών.
Η εύρεση φραγμάτων για τα κλάσματα των Τροποποιημένων Συναρτήσεων Bessel είναι σημαντική, λόγω της χρησιμότητάς τους σε διάφορους κλάδους των Μαθηματικών και όχι μόνο, όπως ενδεικτικά, στην Πεπερασμένη Ελαστικότητα, στην Στατιστική και στις Πιθανότητες, στην Ειδική Θεωρία Σχετικότητας, στην Μηχανική των Ρευστών, στην Ηλεκτρομηχανική, στη Βιοφυσική, στη Μαθηματική Φυσική και αλλού.
Αρχικά, στο Κεφάλαιο 1, παρατέθηκαν κάποια βασικά στοιχεία, όπως ορισμοί των συναρτήσεων Bessel 1ου και 2ου είδους (Τροποποιημένων και μη) και αναδρομικές σχέσεις που ικανοποιούν.
Στο Κεφάλαιο 2, γίνεται η καταγραφή και σύγκριση άνω και κάτω φραγμάτων για τα διάφορα κλάσματα των Τροποποιημένων συναρτήσεων Bessel 1ου είδους, καθώς και αναφορά σε ανισότητες τύπου Turán για τις συναρτήσεις αυτές. Επίσης, αναφέρεται η μεθοδολογία στην οποία στηρίχθηκε ο κάθε ερευνητής για να πάρει τα αντίστοιχα αποτελέσματα.
Στο Κεφάλαιο 3, γίνεται η αντίστοιχη διαδικασία για τα κλάσματα και εκ νέου αναφορά σε ανισότητες τύπου Turán για αυτές τις συναρτήσεις.
|