Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications

Low cost silicates with apatite-structure (general formula of apatite A10-xM6O26±δ, where A = rare earth or alkaline earth and M= Si, Ge, P, V..) have been proposed recently as promising solid electrolyte materials (oxygen ion conductors) for use at intermediate temperature solid oxide fuel cells (S...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gasparyan, Hripsime
Άλλοι συγγραφείς: Μπεμπέλης, Συμεών
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2012
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/5563
id nemertes-10889-5563
record_format dspace
institution UPatras
collection Nemertes
language English
topic Apatites
Lanthanum silicates
Oxide ion conductors
Solid oxide fuel cells
NiO-apatite cermet
Apatite catalyst
Απατίτες
Λάνθανο
621.312 429
spellingShingle Apatites
Lanthanum silicates
Oxide ion conductors
Solid oxide fuel cells
NiO-apatite cermet
Apatite catalyst
Απατίτες
Λάνθανο
621.312 429
Gasparyan, Hripsime
Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
description Low cost silicates with apatite-structure (general formula of apatite A10-xM6O26±δ, where A = rare earth or alkaline earth and M= Si, Ge, P, V..) have been proposed recently as promising solid electrolyte materials (oxygen ion conductors) for use at intermediate temperature solid oxide fuel cells (SOFCs). These materials exhibit sufficiently high ionic conductivity (e.g. ~ 0.01 S cm-1 at 700 oC), which is dominated by the interstitial site mechanism and can exceed that of yttria-stabilized-zirconia (YSZ), the solid electrolyte used in state-of-the-art SOFCs. The apatite structure is tolerant to extensive aliovalent doping, which has been applied for improving ionic conductivity. In this work are presented results concerning synthesis, conductivity and catalytic characterization of Fe- and/or Al-doped apatite type lanthanum silicates (ATLS) of the general formula La10-zSi6-x-yAlxFeyO26±δ as well as electrochemical characterization of interfaces of ATLS pellets with perovskite and Ni-based electrodes. The aim was to investigate the properties of these ATLS material, in particular as it concerns their potential use as SOFC components or as catalysts in oxidation reactions. The conductivity of pellets prepared from ATLS powders synthesized via four different methods and having different grain size was measured under air and at different temperatures in the range 600 -850 oC, aiming to identification of the effect of composition (doping), method of synthesis, grain size and pellet sintering conditions. For electrolytes of the same composition, those prepared via mechanochemical activation exhibited the highest conductivity, which was improved with increasing Al- and decreasing Fe-content. In state-of-the-art SOFCs perovskite electrodes are used as cathodes and Ni-based electrodes as anodes, thus electrochemical characterization of perovskite and Ni-based/ATLS interfaces was carried out. As it concerns perovskite/ATLS interfaces, the characterization focused on the study of the open circuit AC impedance characteristics of a La0.8Sr0.2Ni0.4Fe0.6O3-δ/La9.83Si5Al0.75Fe0.25O26±δ interface, at temperatures 600 to 800 oC and oxygen partial pressures ranging from 0.1 to 20 kPa. Under the aforementioned conditions, it was observed that the impedance characteristics of the interface were determined by at least two different processes, corresponding to two partially overlapping depressed arcs in the Nyquist plots. The polarization conductance of the interface was found to increase with increasing temperature as well as with increasing oxygen partial pressure, following a power law dependence. The electrochemical characterization of Ni-based electrodes/ATLS interfaces involved study of the electrochemical characteristics of NiO-apatite cermet electrodes as well as a Ni sputtered electrode interfaced with Al- or Fe-doped apatite electrolytes, under hydrogen atmospheres. The impedance characteristics of these electrodes were found to be determined by up to three different processes, their relative contribution depending on the electrode microstructure, Ni content (as it concerns the cermet electrodes), temperature, hydrogen partial pressure and applied overpotential. Aiming to investigation of potential catalytic properties of ATLS materials the catalytic activity for CO combustion of a series of ATLS powders was studied. For this purpose, two series of apatite-type lanthanum silicates La10-xSi6-y-zAlyFezO27-3x/2-(y+z)/2 (ATLS), undoped or doped with Al and/or Fe, were synthesized via sol-gel and modified dry sol-gel methods and tested as catalysts for CO combustion. The experiments revealed that the ATLS powders were catalytically active for CO combustion above approximately 300 oC, with light-off temperatures T50 (50% conversion of CO) ranging from 505 to 629 oC. The study focused on the effect on catalytic activity of the synthesis method and doping with Al and/or Fe. Non-doped ATLS with stoichiometric structure, namely La10Si6O27 prepared via the sol-gel method, exhibited the highest catalytic activity for CO oxidation among all tested compositions, the comparison being based on the measured catalytic rate (expressed per surface area of the catalyst) under practically differential conditions. Compared to La-Sr-Mn-O and La-Sr-Co-Fe-O perovskite powders, the tested ATLS powders exhibited lower catalytic activity for CO oxidation.
author2 Μπεμπέλης, Συμεών
author_facet Μπεμπέλης, Συμεών
Gasparyan, Hripsime
format Thesis
author Gasparyan, Hripsime
author_sort Gasparyan, Hripsime
title Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
title_short Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
title_full Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
title_fullStr Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
title_full_unstemmed Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications
title_sort apatite based materials for solid oxide fuel cell (sofc) and catalytic applications
publishDate 2012
url http://hdl.handle.net/10889/5563
work_keys_str_mv AT gasparyanhripsime apatitebasedmaterialsforsolidoxidefuelcellsofcandcatalyticapplications
_version_ 1771297352178466816
spelling nemertes-10889-55632022-09-05T20:35:06Z Apatite based materials for solid oxide fuel cell (SOFC) and catalytic applications Gasparyan, Hripsime Μπεμπέλης, Συμεών Μπεμπέλης, Συμεών Μπογοσιάν, Σογομών Νικολόπουλος, Παναγιώτης Νεοφυτίδης, Στυλιανός Κουτσούκος, Πέτρος Κονταρίδης, Δημήτριος Κατσαούνης, Αλέξανδρος Apatites Lanthanum silicates Oxide ion conductors Solid oxide fuel cells NiO-apatite cermet Apatite catalyst Απατίτες Λάνθανο 621.312 429 Low cost silicates with apatite-structure (general formula of apatite A10-xM6O26±δ, where A = rare earth or alkaline earth and M= Si, Ge, P, V..) have been proposed recently as promising solid electrolyte materials (oxygen ion conductors) for use at intermediate temperature solid oxide fuel cells (SOFCs). These materials exhibit sufficiently high ionic conductivity (e.g. ~ 0.01 S cm-1 at 700 oC), which is dominated by the interstitial site mechanism and can exceed that of yttria-stabilized-zirconia (YSZ), the solid electrolyte used in state-of-the-art SOFCs. The apatite structure is tolerant to extensive aliovalent doping, which has been applied for improving ionic conductivity. In this work are presented results concerning synthesis, conductivity and catalytic characterization of Fe- and/or Al-doped apatite type lanthanum silicates (ATLS) of the general formula La10-zSi6-x-yAlxFeyO26±δ as well as electrochemical characterization of interfaces of ATLS pellets with perovskite and Ni-based electrodes. The aim was to investigate the properties of these ATLS material, in particular as it concerns their potential use as SOFC components or as catalysts in oxidation reactions. The conductivity of pellets prepared from ATLS powders synthesized via four different methods and having different grain size was measured under air and at different temperatures in the range 600 -850 oC, aiming to identification of the effect of composition (doping), method of synthesis, grain size and pellet sintering conditions. For electrolytes of the same composition, those prepared via mechanochemical activation exhibited the highest conductivity, which was improved with increasing Al- and decreasing Fe-content. In state-of-the-art SOFCs perovskite electrodes are used as cathodes and Ni-based electrodes as anodes, thus electrochemical characterization of perovskite and Ni-based/ATLS interfaces was carried out. As it concerns perovskite/ATLS interfaces, the characterization focused on the study of the open circuit AC impedance characteristics of a La0.8Sr0.2Ni0.4Fe0.6O3-δ/La9.83Si5Al0.75Fe0.25O26±δ interface, at temperatures 600 to 800 oC and oxygen partial pressures ranging from 0.1 to 20 kPa. Under the aforementioned conditions, it was observed that the impedance characteristics of the interface were determined by at least two different processes, corresponding to two partially overlapping depressed arcs in the Nyquist plots. The polarization conductance of the interface was found to increase with increasing temperature as well as with increasing oxygen partial pressure, following a power law dependence. The electrochemical characterization of Ni-based electrodes/ATLS interfaces involved study of the electrochemical characteristics of NiO-apatite cermet electrodes as well as a Ni sputtered electrode interfaced with Al- or Fe-doped apatite electrolytes, under hydrogen atmospheres. The impedance characteristics of these electrodes were found to be determined by up to three different processes, their relative contribution depending on the electrode microstructure, Ni content (as it concerns the cermet electrodes), temperature, hydrogen partial pressure and applied overpotential. Aiming to investigation of potential catalytic properties of ATLS materials the catalytic activity for CO combustion of a series of ATLS powders was studied. For this purpose, two series of apatite-type lanthanum silicates La10-xSi6-y-zAlyFezO27-3x/2-(y+z)/2 (ATLS), undoped or doped with Al and/or Fe, were synthesized via sol-gel and modified dry sol-gel methods and tested as catalysts for CO combustion. The experiments revealed that the ATLS powders were catalytically active for CO combustion above approximately 300 oC, with light-off temperatures T50 (50% conversion of CO) ranging from 505 to 629 oC. The study focused on the effect on catalytic activity of the synthesis method and doping with Al and/or Fe. Non-doped ATLS with stoichiometric structure, namely La10Si6O27 prepared via the sol-gel method, exhibited the highest catalytic activity for CO oxidation among all tested compositions, the comparison being based on the measured catalytic rate (expressed per surface area of the catalyst) under practically differential conditions. Compared to La-Sr-Mn-O and La-Sr-Co-Fe-O perovskite powders, the tested ATLS powders exhibited lower catalytic activity for CO oxidation. - 2012-10-01T07:05:44Z 2012-10-01T07:05:44Z 2011-12-22 2012-10-01 Thesis http://hdl.handle.net/10889/5563 en Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf