Ασυμπτωτικά αναπτύγματα ολοκληρωμάτων

Ενώ η πραγματική ανάλυση φαίνεται να έχει προβάδισμα όσο αφορά στον τρόπο επίλυσης των περισσότερων προβλημάτων λογισμού που διδάσκονται τόσο σε σχολικό όσο και σε πανεπιστημιακό επίπεδο, η πραγματικότητα είναι διαφορετική. Ουσιαστικά, ελάχιστα προβλήματα της εφαρμοσμένης ανάλυσης λύνονται α...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Δρούλια, Σοφία
Άλλοι συγγραφείς: Πετροπούλου, Ευγενία
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2012
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/5578
Περιγραφή
Περίληψη:Ενώ η πραγματική ανάλυση φαίνεται να έχει προβάδισμα όσο αφορά στον τρόπο επίλυσης των περισσότερων προβλημάτων λογισμού που διδάσκονται τόσο σε σχολικό όσο και σε πανεπιστημιακό επίπεδο, η πραγματικότητα είναι διαφορετική. Ουσιαστικά, ελάχιστα προβλήματα της εφαρμοσμένης ανάλυσης λύνονται αναλυτικά, καθώς οι λύσεις που προκύπτουν είναι συχνά υπό μορφή ολοκληρωμάτων που δεν υπολογίζονται στοιχειωδώς. Στην παρούσα διπλωματική εργασία γίνεται προσπάθεια αντιμετώπισης κάποιων ολοκληρωμάτων με τεχνικές της ασυμπτωτικής ανάλυσης. Αφότου αποσαφηνιστούν κάποιες βασικές έννοιες της ασυμπτωτικής ανάλυσης, παρουσιάζονται πέντε μέθοδοι υπολογισμού ολοκληρωμάτων μέσω ασυμπτωτικών αναπτυγμάτων. Το σύνολο τους, καλύπτει ένα αρκετά ευρύ φάσμα ανάλυσης και υπολογισμού τέτοιου τύπου ολοκληρωμάτων και η κάθε μια από αυτές, εξιδεικεύεται σε συγκεκριμένες περιπτώσεις, ανάλογα με το χώρο στον οποίο ανήκουν οι υπό ολοκλήρωση συναρτήσεις καθώς και το πεδίο ολοκλήρωσης.