Περίληψη: | Σκοπός της παρούσας διπλωματικής διατριβής είναι η μελέτη και ανάπτυξη ενός νέου αλγοριθμικού πλαισίου Συνεργατικής Διήθησης(CF) για την παραγωγή συστάσεων. Η μέθοδος που προτείνουμε, βασίζεται στην εκμετάλλευση της ιεραρχικής διάρθρωσης του χώρου αντικειμένων και πατά διαισθητικά στην ιδιότητα της ``Σχεδόν Πλήρης Αναλυσιμότητας'' (NCD) η οποία είναι συνυφασμένη με τη δομή της πλειοψηφίας των ιεραρχικών συστημάτων.
Η Συνεργατική Διήθηση αποτελεί ίσως την πιο πετυχημένη οικογένεια τεχνικών για την παραγωγή συστάσεων. Η μεγάλη απήχησή της στο διαδίκτυο αλλά και η ευρεία εφαρμογή της σε σημαντικά εμπορικά περιβάλλοντα, έχουν οδηγήσει στη σημαντική ανάπτυξη της θεωρίας την τελευταία δεκαετία, όπου μια ευρεία ποικιλία αλγορίθμων και μεθόδων έχουν προταθεί. Ωστόσο, παρά την πρωτοφανή τους επιτυχία οι CF μέθοδοι παρουσιάζουν κάποιους σημαντικούς περιορισμούς συμπεριλαμβανομένης της επεκτασιμότητας και της αραιότητας των δεδομένων. Τα προβλήματα αυτά επιδρούν αρνητικά στην ποιότητα των παραγόμενων συστάσεων και διακυβεύουν την εφαρμοσιμότητα πολλών CF αλγορίθμων σε ρεαλιστικά σενάρια.
Χτίζοντας πάνω στη διαίσθηση πίσω από τον αλγόριθμο NCDawareRank - μίας γενικής μεθόδου υπολογισμού διανυσμάτων κατάταξης ιεραρχικά δομημένων γράφων - και της σχετικής με αυτόν έννοιας της NCD εγγύτητας, προβαίνουμε σε μία μοντελοποίηση του συστήματος με τρόπο που φωτίζει τα ενδημικά του χαρακτηριστικά και προτείνουμε έναν νέο αλγοριθμικό πλαίσιο συστάσεων, τον Αλγόριθμο 1. Στο επίκεντρο της προσέγγισής μας είναι η προσπάθεια να συνδυάσουμε τις άμεσες με τις NCD, ``γειτονιές'' των αντικειμένων ώστε να πετύχουμε μεγαλύτερης ακρίβειας χαρακτηρισμό των πραγματικών συσχετισμών μεταξύ των στοιχείων του χώρου αντικειμένων, με σκοπό την βελτίωση της ποιότητας των συστάσεων αλλά και την αντιμετώπιση της εγγενούς αραιότητας και των προβλημάτων που αυτή συνεπάγεται.
Για να αξιολογήσουμε την απόδοση της μεθόδου μας υλοποιούμε και εφαρμόζουμε τον Αλγόριθμο 1 στο κλασικό movie recommendation πρόβλημα και παραθέτουμε μια σειρά από πειράματα χρησιμοποιώντας τo MovieLens Dataset. Τα πειράματά μας δείχνουν πως ο Αλγόριθμος 1 με την εκμετάλλευση της ιδέας της NCD εγγύτητας καταφέρνει να πετύχει λίστες συστάσεων υψηλότερης ποιότητας σε σύγκριση με τις άλλες state-of-the-art μεθόδους που έχουν προταθεί στη βιβλιογραφία, σε ευρέως χρησιμοποιούμενες μετρικές (micro- και macro-DOA), αποδεικνύοντας την ίδια στιγμή πως είναι λιγότερο επιρρεπής στα προβλήματα που σχετίζονται με την αραιότητα και έχοντας παράλληλα ανταγωνιστικό προφίλ πολυπλοκότητας και απαιτήσεις αποθήκευσης.
|