Περίληψη: | Non-stationary signals, that is signals with time-varying (TV) statistical properties, are commonly encountered in engineering practice. The vibration responses of structures, such as traffic-excited bridges, robotic devices, rotating machinery, and so on, constitute typical examples of non-stationary signals. Structures characterized by properties that vary with time are generally referred as TV structures and their vibration-based identification under normal operating conditions is a significant and challenging problem. An important class of parametric methods for the solution of this problem is based on Functional Series Time-dependent AutoRegressive Moving Average (FS-TARMA) models. These models have parameters that explicitly depend on time, with the dependence described by deterministic functions belonging to specific functional sub-spaces.
The focus of the present thesis is on the development of complete and advanced FS-TARMA methods that will offer important improvements in overcoming drawbacks of existent methods and will further foster practical use and application of FS-TARMA models in non-stationary vibration analysis. The specific objectives of the thesis are: a) The introduction of a novel class of Adaptable FS-TARMA (AFS-TARMA) models and the development of a method for their effective identification. AFS-TARMA models are adaptable in the sense that they are not based on basis functions of a fixed form, but instead, they use basis functions with a-priori unknown properties that may adapt to the specific random signal characteristics. b) The postulation of a vector FS-TARMA method for output-only structural identification and the development of effective tools for both model parameter estimation and model structure selection. c) The introduction of a statistical method for vibration-based fault diagnosis in TV structures. d) The presentation of a thorough review on FS-TARMA models covering both theoretical and practical aspects of the model parameter estimation and structure selection problems with special emphasis being placed on promising recent methods.
The methods that are developed in each chapter of this thesis are validated through their application in both numerical and experimental case studies and comparisons with currently available non-stationary signal identification methods. The results of the study demonstrate the new methods' applicability, effectiveness, and high potential for parsimonious and accurate identification and dynamic analysis of TV structures.
|