Περίληψη: | Η παρούσα διπλωματική διατριβή εντάσσεται ερευνητικά στην περιοχή της Υπολογιστικής Στατιστικής, καθώς ασχολούμαστε με τη μελέτη μεθόδων προσομοίωσης από κάποια κατανομή π (κατανομή στόχο) και τον υπολογισμό σύνθετων ολοκληρωμάτων. Σε πολλά πραγματικά προβλήματα, όπου η μορφή της π είναι ιδιαίτερα πολύπλοκή ή/και η διάσταση του χώρου καταστάσεων μεγάλη, η προσομοίωση από την π δεν μπορεί να γίνει με απλές τεχνικές καθώς επίσης και ο υπολογισμός των ολοκληρωμάτων είναι πάρα πολύ δύσκολο αν όχι αδύνατο να γίνει αναλυτικά. Γι’ αυτό, καταφεύγουμε σε τεχνικές Monte Carlo (MC) και Markov Chain Monte Carlo (MCMC), οι οποίες προσομοιώνουν τιμές τυχαίων μεταβλητών και εκτιμούν τα ολοκληρώματα μέσω κατάλληλων συναρτήσεων των προσομοιωμένων τιμών. Οι τεχνικές MC παράγουν ανεξάρτητες παρατηρήσεις είτε απ’ ευθείας από την κατανομή-στόχο π είτε από κάποια διαφορετική κατανομή-πρότασης g. Οι τεχνικές MCMC προσομοιώνουν αλυσίδες Markov με στάσιμη κατανομή την και επομένως οι παρατηρήσεις είναι εξαρτημένες.
Στα πλαίσια αυτής της εργασίας θα ασχοληθούμε κυρίως με τον αλγόριθμο Metropolis-Hastings που είναι ένας από τους σημαντικότερους, αν όχι ο σημαντικότερος, MCMC αλγόριθμους.
Πιο συγκεκριμένα, στο Κεφάλαιο 2 γίνεται μια σύντομη αναφορά σε γνωστές τεχνικές MC, όπως η μέθοδος Αποδοχής-Απόρριψης, η μέθοδος Αντιστροφής και η μέθοδος Δειγματοληψίας σπουδαιότητας καθώς επίσης και σε τεχνικές MCMC, όπως ο αλγόριθμός Metropolis-Hastings, o Δειγματολήπτης Gibbs και η μέθοδος Metropolis Within Gibbs.
Στο Κεφάλαιο 3 γίνεται αναλυτική αναφορά στον αλγόριθμο Metropolis-Hastings. Αρχικά, παραθέτουμε μια σύντομη ιστορική αναδρομή και στη συνέχεια δίνουμε μια αναλυτική περιγραφή του. Παρουσιάζουμε κάποιες ειδικές μορφές τού καθώς και τις βασικές ιδιότητες που τον χαρακτηρίζουν. Το κεφάλαιο ολοκληρώνεται με την παρουσίαση κάποιων εφαρμογών σε προσομοιωμένα καθώς και σε πραγματικά δεδομένα.
Το τέταρτο κεφάλαιο ασχολείται με μεθόδους εκτίμησης της διασποράς του εργοδικού μέσου ο οποίος προκύπτει από τις MCMC τεχνικές. Ιδιαίτερη αναφορά γίνεται στις μεθόδους Batch means και Spectral Variance Estimators.
Τέλος, το Κεφάλαιο 5 ασχολείται με την εύρεση μιας κατάλληλης κατανομή πρότασης για τον αλγόριθμό Metropolis-Hastings. Παρόλο που ο αλγόριθμος Metropolis-Hastings μπορεί να συγκλίνει για οποιαδήποτε κατανομή πρότασης αρκεί να ικανοποιεί κάποιες βασικές υποθέσεις, είναι γνωστό ότι μία κατάλληλη επιλογή της κατανομής πρότασης βελτιώνει τη σύγκλιση του αλγόριθμου. Ο προσδιορισμός της βέλτιστής κατανομής πρότασης για μια συγκεκριμένη κατανομή στόχο είναι ένα πολύ σημαντικό αλλά εξίσου δύσκολο πρόβλημα. Το πρόβλημα αυτό έχει προσεγγιστεί με πολύ απλοϊκές τεχνικές (trial-and-error τεχνικές) αλλά και με adaptive αλγόριθμούς που βρίσκουν μια "καλή" κατανομή πρότασης αυτόματα.
|