Περίληψη: | Σκοπός της παρούσας εργασίας είναι η κινητική μελέτη της αντίδρασης παραγωγής υδρογόνου μέσω φωτοκαταλυτικής αναμόρφωσης της μεθανόλης και η ανάπτυξη μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας στον πειραματικό φωτοαντιδραστήρα. Τα αποτελέσματα μπορούν να χρησιμοποιηθούν για τον υπολογισμό των κινητικών παραμέτρων της αντίδρασης και τον προσδιορισμό των σχεδιαστικών παραμέτρων που απαιτούνται για την ανάπτυξη και βελτιστοποίηση κατάλληλου φωτοαντιδραστήρα.
Η φωτοκαταλυτική διάσπαση του νερού με χρήση ημιαγωγών και ηλιακής ακτινοβολίας αποτελεί μια από τις πλέον υποσχόμενες διεργασίες για τη φωτοχημική μετατροπή και αποθήκευση της ηλιακής ενέργειας. Η αντίδραση μπορεί να λάβει χώρα μέσω διέγερσης ενός ημιαγωγού (π.χ. TiO2) από φωτόνια με ενέργεια ίση ή μεγαλύτερη από το ενεργειακό του χάσμα. Το αποτέλεσμα είναι η προώθηση ενός ηλεκτρονίου από τη ζώνη σθένους (VB) στη ζώνη αγωγιμότητας (CB) του υλικού και η δημιουργία μιας οπής στην ζώνη αγωγιμότητας:
(1)
Η συνήθης τύχη των φωτοπαραγόμενων φορέων φορτίου είναι η (μη επιθυμητή) επανασύνδεσή τους, που συνοδεύεται από έκλυση της αποθηκευμένης ενέργειας με τη μορφή θερμότητας:
(2)
Οι φωτοπαραγόμενες οπές και τα ηλεκτρόνια που καταφέρνουν να φθάσουν στην επιφάνεια του ημιαγωγού μπορούν, υπό ορισμένες προϋποθέσεις, να εκκινήσουν αντιδράσεις για την παραγωγή οξυγόνου και υδρογόνου μέσω οξείδωσης και αναγωγής του νερού, αντίστοιχα:
(3)
(4)
Το πρόβλημα είναι ότι ο ρυθμός παραγωγής υδρογόνου είναι πολύ μικρός, κυρίως λόγω της εγγενώς μικρής κβαντικής απόδοσης της διεργασίας, η οποία καθορίζεται από την αντίδραση επανασύνδεσης ηλεκτρονίου-οπής (Εξ.2). Η αντίδραση επανασύνδεσης μπορεί να κατασταλεί παρουσία κατάλληλων “θυσιαζόμενων” ενώσεων στο διάλυμα, οι οποίες αντιδρούν ταχέως και μη αντιστρεπτά με τις φωτοπαραγόμενες οπές. Με τον τρόπο αυτό αυξάνεται ο χρόνος ζωής των ηλεκτρονίων και, επομένως, ο ρυθμός παραγωγής υδρογόνου μέσω της Εξ. 4. Ως θυσιαζόμενες ενώσεις μπορούν να χρησιμοποιηθούν χαμηλού ή “αρνητικού” κόστους οργανικές ενώσεις, όπως παραπροϊόντα και παράγωγα βιομάζας. Οι ενώσεις αυτές οξειδώνονται προοδευτικά από τις οπές προς CO2, με αποτέλεσμα τα φωτοπαραγόμενα ηλεκτρόνια να ανάγουν αποδοτικά το νερό προς παραγωγή Η2. Η συνολική διεργασία μπορεί να περιγραφεί από την ακόλουθη γενική αντίδραση αναμόρφωσης:
(5)
Χαρακτηριστικά πλεονεκτήματα της μεθόδου αποτελούν ο σχετικά υψηλός ρυθμός παραγωγής υδρογόνου και το γεγονός ότι, σε αντίθεση με τις συνήθεις θερμοκαταλυτικές αντιδράσεις αναμόρφωσης, η αντίδραση πραγματοποιείται σε συνθήκες περιβάλλοντος. Επιπροσθέτως, η παραγωγή υδρογόνου μπορεί να λάβει χώρα με ταυτόχρονη αποικοδόμηση οργανικών ρύπων, με προφανή περιβαλλοντικά οφέλη.
Ένα άλλο σημαντικό πρόβλημα που σχετίζεται με τις περιορισμένες εφαρμογές των φωτοκαταλυτικών μεθόδων σε πιλοτική και βιομηχανική κλίμακα οφείλεται στη δυσκολία σχεδιασμού και ανάπτυξης αποδοτικών φωτοαντιδραστήρων. Το πρόβλημα του σχεδιασμού έγκειται στο γεγονός ότι, σε αντίθεση με τους συμβατικούς καταλύτες, η ενεργοποίηση ενός φωτοκαταλύτη δε γίνεται θερμικά αλλά μέσω απορρόφησης φωτονίων κατάλληλης ενέργειας. Επομένως, για την μοντελοποίηση ενός φωτοαντιδραστήρα απαιτείται, εκτός από τη χρήση των συνήθων εξισώσεων για τα ισοζύγια μάζας, θερμότητας και ορμής, μια επιπλέον εξίσωση για την περιγραφή του ισοζυγίου της ενέργειας της ακτινοβολίας στο σύστημα. Η εξίσωση αυτή χρησιμοποιείται για τον υπολογισμό του “τοπικού ογκομετρικού ρυθμού απορρόφησης ενέργειας” (local volumetric rate of energy absorption, LVREA), ο οποίος αποτελεί μια από τις σημαντικότερες σχεδιαστικές παραμέτρους ενός φωτοαντιδραστήρα διότι περιγράφει την ποσότητα των φωτονίων που απορροφούνται ανά μονάδα όγκου σε κάθε σημείο του αντιδραστήρα. Για τον σχεδιασμό του αντιδραστήρα είναι επίσης απαραίτητη και μία έκφραση του ρυθμού της αντίδρασης. Για την εξαγωγή αυτής της έκφρασης απαιτείται η εύρεση του ρυθμού του βήματος ενεργοποίησης μέσω ακτινοβολίας, ο οποίος εκφράζεται συναρτήσει του LVREA. Εφόσον ο ρυθμός αυτός είναι γνωστός μπορεί να εισαχθεί στο κινητικό μοντέλο της αντίδρασης ενώ οι διάφορες κινητικές παράμετροι μπορούν να υπολογιστούν πειραματικά. Μεταξύ των προσεγγίσεων που έχουν προταθεί για τον υπολογισμό του LVRΕA, οι πιο ακριβείς περιλαμβάνουν την αριθμητική επίλυση της εξίσωσης μεταφοράς ακτινοβολίας (radiation transfer equation, RTE).
Στην παρούσα εργασία χρησιμοποιείται η μέθοδος των “φασματικών στοιχείων” (spectral elements) για την επίλυση ενός μονοδιάστατου μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας και τον υπολογισμό του LVREA σε έναν πειραματικό αντιδραστήρα, στον οποίο περιέχεται ο φωτοκαταλύτης σε μορφή αιωρήματος. Η αντίδραση που μελετάται είναι η παραγωγή υδρογόνου μέσω της φωτοκαταλυτικής αναμόρφωσης της μεθανόλης (Εξ. 6) σε αιώρημα καταλύτη 0.5%Pt/TiO2, το οποίο ακτινοβολείται με φως στη περιοχή που απορροφά το TiO2.
(6)
Σύμφωνα με το μοντέλο που αναπτύχθηκε, ο ρυθμός της φωτοκαταλυτικής αντίδρασης εξαρτάται από τη συγκέντρωση του καταλύτη στο αιώρημα, την ειδική ένταση ακτινοβολίας και τη συγκέντρωση του αντιδρώντος στο διάλυμα. Για τον σκοπό αυτό, μελετήθηκε στην παρούσα εργασία η επίδραση των λειτουργικών παραμέτρων της αντίδρασης, όπως η ένταση της προσπίπτουσας ακτινοβολίας (Ι0), η συγκέντρωση του φωτοκαταλύτη (Ccat) και η συγκέντρωση της μεθανόλης, (CMeOH) στο ρυθμό παραγωγής Η2 (rH2). Από τα αποτελέσματα προκύπτει ότι ο ρυθμός παραγωγής υδρογόνου εξαρτάται ισχυρά από τη συγκέντρωση του οργανικού υποστρώματος και αυξάνει κατά σχεδόν δύο τάξεις μεγέθους με αύξηση της CMeOH από 0 σε 1 mol L-1. Επιπλέον, αύξηση του ρυθμού επιτυγχάνεται με αύξηση του Ι0. Τα αποτελέσματα των φωτοκαταλυτικών πειραμάτων μπορούν να χρησιμοποιηθούν για τη μοντελοποίηση του συστήματος και το σχεδιασμό φωτοκαταλυτικού αντιδραστήρα για την παραγωγή υδρογόνου.
|