Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης

Η ηλεκτροχημική ενίσχυση της κατάλυσης (EPOC ή αλλιώς μη-φαρανταïκή τροποποίηση της καταλυτικής ενεργότητας, φαινόμενο NEMCA) είναι ένα φαινόμενο όπου εφαρμογή μικρών ρευμάτων ή δυναμικών (±2V) σε ένα καταλύτη που είναι υποστηριγμένος σε ένα ηλεκτρολύτη, ιοντικό ή μικτό ιοντικό-ηλεκτρονιακό αγωγό, μ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Θελερίτης, Δημήτριος
Άλλοι συγγραφείς: Βαγενάς, Κωνσταντίνος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2013
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/6041
id nemertes-10889-6041
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Ηλεκτροχημεία
Κατάλυση
Electrochemistry
Catalysis
660.297
spellingShingle Ηλεκτροχημεία
Κατάλυση
Electrochemistry
Catalysis
660.297
Θελερίτης, Δημήτριος
Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
description Η ηλεκτροχημική ενίσχυση της κατάλυσης (EPOC ή αλλιώς μη-φαρανταïκή τροποποίηση της καταλυτικής ενεργότητας, φαινόμενο NEMCA) είναι ένα φαινόμενο όπου εφαρμογή μικρών ρευμάτων ή δυναμικών (±2V) σε ένα καταλύτη που είναι υποστηριγμένος σε ένα ηλεκτρολύτη, ιοντικό ή μικτό ιοντικό-ηλεκτρονιακό αγωγό, μπορεί να επιφέρει σημαντική τροποποίηση της καταλυτικής ενεργότητας αλλά και εκλεκτικότητας της αντίδρασης που γίνεται στην αέρια φάση, με τρόπο ελεγχόμενο, αντιστρεπτό και έως ένα βαθμό προβλέψιμο. Η ηλεκτροχημική ενίσχυση έχει βρεθεί με χρήση διαφόρων τεχνικών ότι πηγάζει από την ηλεκτροχημικά ελεγχόμενη διάχυση ενισχυτικών ιοντικών ειδών ανάμεσα στο φορέα-ηλεκτρολύτη και στα καταλυτικά σωματίδια. Το φαινόμενο έχει εφαρμοστεί σε πληθώρα καταλυτικών συστημάτων (πάνω από 70) τα τελευταία 30 χρόνια ενώ έχει πραγματοποιηθεί και επιτυχής εφαρμογή του σε πιλοτική κλίμακα χάρη στον μονολιθικό ηλεκτροχημικά ενισχυόμενο αντιδραστήρα. Στο πρώτο κεφάλαιο της παρούσας διατριβής γίνεται εκτεταμένη αναφορά στους στερεούς ηλεκτρολύτες, στις ιδιότητες τους καθώς και τους τομείς στους οποίους χρησιμοποιούνται με ιδιαίτερη σημασία στη σταθεροποιημένη με οξείδιο του υττρίου ζιρκονία (YSZ), που αποτελεί ένα πολύ συχνά χρησιμοποιούμενο αγωγό ιόντων οξυγόνου. Επιπρόσθετα, εισάγονται οι έννοιες της μετανάστευσης (spillover) και της αντίστροφης μετανάστευσης (backspillover), οι οποίες χρησιμοποιούνται στην ερμηνεία και την κατανόηση του φαινομένου της ηλεκτροχημικής ενίσχυσης και των αλληλεπιδράσεων μετάλλου-φορέα (MSI). Στο δεύτερο κεφάλαιο γίνεται μια εισαγωγή στις αρχές του φαινομένου της Ηλεκτροχημικής Ενίσχυσης της Κατάλυσης όπου συζητούνται αρκετά παραδείγματα εφαρμογής του και γίνεται ανασκόπηση όλων των εργασιών που υπάρχουν στην βιβλιογραφία και αφορούν στο συγκεκριμένο φαινόμενο. Παρουσιάζονται επίσης, πλήθος πειραματικών τεχνικών, όπως ηλεκτροκινητικών πειραμάτων δυναμικής απόκρισης, μετρήσεων έργου εξόδου, κυκλικής βολταμμετρίας, XPS, TPD και STM, καθώς και θεωρητικών μελετών ,με στόχο την κατανόηση της αρχής του φαινομένου σε ατομικό επίπεδο. Στο τρίτο κεφάλαιο παρουσιάζονται τα πειραματικά αποτελέσματα από την εφαρμογή του φαινομένου της ηλεκτροχημικής ενίσχυσης της κατάλυσης στην αντίδραση βιομηχανικής σημασίας της υδρογονοαποθείωσης (HDS). Στην παρούσα μελέτη χρησιμοποιήθηκε η πρότυπη ένωση του θειοφαινίου, χρησιμοποιώντας στερεούς ηλεκτρολύτες αγωγούς πρωτονίων σε συνδυασμό με σύγχρονους στηριγμένους καταλύτες, όπως για παράδειγμα RuS2, MoS2, ή FeSx και MoS2-CoS2 καθώς και μη-στηριγμένους όπως ο Nebula (NiMoW). Η μελέτη επικεντρώθηκε στην επίτευξη ηλεκτροχημικής ενίσχυσης στην HDS του θειοφαινίου υπό συνθήκες ατμοσφαιρικής πίεσης στο θερμοκρασιακό εύρος 250οC-550οC ανάλογα με το στερεό ηλεκτρολύτη (BCN18, CZI ή YSZ). Ηλεκτροχημική Ενίσχυση επιτεύχθηκε σε συνολικά 10 καταλυτικά ηλεκτρόδια. Στην περίπτωση χρήσης πρωτονιακών αγωγών, τιμές προσαύξησης ρυθμού έως 20% και φαρανταϊκής απόδοσης έως ~600 καταγράφησαν, αναδεικνύοντας την ισχυρά μη-φαρανταϊκή συμπεριφορά και το υψηλό ενεργειακό όφελος σε Τ<300oC. Στην περίπτωση των αγωγών ιόντων οξυγόνου (YSZ) προσαύξηση ρυθμού έως και 300% καταγράφηκε με τιμές φαρανταϊκής απόδοσης έως και 0.2 στους 500oC.
author2 Βαγενάς, Κωνσταντίνος
author_facet Βαγενάς, Κωνσταντίνος
Θελερίτης, Δημήτριος
format Thesis
author Θελερίτης, Δημήτριος
author_sort Θελερίτης, Δημήτριος
title Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
title_short Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
title_full Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
title_fullStr Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
title_full_unstemmed Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
title_sort ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης
publishDate 2013
url http://hdl.handle.net/10889/6041
work_keys_str_mv AT theleritēsdēmētrios ēlektrochēmikēenischysētēskatalysēsseantidraseisydrogonoapotheiōsēs
_version_ 1771297163192565760
spelling nemertes-10889-60412022-09-05T06:57:58Z Ηλεκτροχημική ενίσχυση της κατάλυσης σε αντιδράσεις υδρογονοαποθείωσης Θελερίτης, Δημήτριος Βαγενάς, Κωνσταντίνος Βαγενάς, Κωνσταντίνος Κορδούλης, Χρήστος Μπεμπέλης, Συμεων Theleritis, Dimitrios Ηλεκτροχημεία Κατάλυση Electrochemistry Catalysis 660.297 Η ηλεκτροχημική ενίσχυση της κατάλυσης (EPOC ή αλλιώς μη-φαρανταïκή τροποποίηση της καταλυτικής ενεργότητας, φαινόμενο NEMCA) είναι ένα φαινόμενο όπου εφαρμογή μικρών ρευμάτων ή δυναμικών (±2V) σε ένα καταλύτη που είναι υποστηριγμένος σε ένα ηλεκτρολύτη, ιοντικό ή μικτό ιοντικό-ηλεκτρονιακό αγωγό, μπορεί να επιφέρει σημαντική τροποποίηση της καταλυτικής ενεργότητας αλλά και εκλεκτικότητας της αντίδρασης που γίνεται στην αέρια φάση, με τρόπο ελεγχόμενο, αντιστρεπτό και έως ένα βαθμό προβλέψιμο. Η ηλεκτροχημική ενίσχυση έχει βρεθεί με χρήση διαφόρων τεχνικών ότι πηγάζει από την ηλεκτροχημικά ελεγχόμενη διάχυση ενισχυτικών ιοντικών ειδών ανάμεσα στο φορέα-ηλεκτρολύτη και στα καταλυτικά σωματίδια. Το φαινόμενο έχει εφαρμοστεί σε πληθώρα καταλυτικών συστημάτων (πάνω από 70) τα τελευταία 30 χρόνια ενώ έχει πραγματοποιηθεί και επιτυχής εφαρμογή του σε πιλοτική κλίμακα χάρη στον μονολιθικό ηλεκτροχημικά ενισχυόμενο αντιδραστήρα. Στο πρώτο κεφάλαιο της παρούσας διατριβής γίνεται εκτεταμένη αναφορά στους στερεούς ηλεκτρολύτες, στις ιδιότητες τους καθώς και τους τομείς στους οποίους χρησιμοποιούνται με ιδιαίτερη σημασία στη σταθεροποιημένη με οξείδιο του υττρίου ζιρκονία (YSZ), που αποτελεί ένα πολύ συχνά χρησιμοποιούμενο αγωγό ιόντων οξυγόνου. Επιπρόσθετα, εισάγονται οι έννοιες της μετανάστευσης (spillover) και της αντίστροφης μετανάστευσης (backspillover), οι οποίες χρησιμοποιούνται στην ερμηνεία και την κατανόηση του φαινομένου της ηλεκτροχημικής ενίσχυσης και των αλληλεπιδράσεων μετάλλου-φορέα (MSI). Στο δεύτερο κεφάλαιο γίνεται μια εισαγωγή στις αρχές του φαινομένου της Ηλεκτροχημικής Ενίσχυσης της Κατάλυσης όπου συζητούνται αρκετά παραδείγματα εφαρμογής του και γίνεται ανασκόπηση όλων των εργασιών που υπάρχουν στην βιβλιογραφία και αφορούν στο συγκεκριμένο φαινόμενο. Παρουσιάζονται επίσης, πλήθος πειραματικών τεχνικών, όπως ηλεκτροκινητικών πειραμάτων δυναμικής απόκρισης, μετρήσεων έργου εξόδου, κυκλικής βολταμμετρίας, XPS, TPD και STM, καθώς και θεωρητικών μελετών ,με στόχο την κατανόηση της αρχής του φαινομένου σε ατομικό επίπεδο. Στο τρίτο κεφάλαιο παρουσιάζονται τα πειραματικά αποτελέσματα από την εφαρμογή του φαινομένου της ηλεκτροχημικής ενίσχυσης της κατάλυσης στην αντίδραση βιομηχανικής σημασίας της υδρογονοαποθείωσης (HDS). Στην παρούσα μελέτη χρησιμοποιήθηκε η πρότυπη ένωση του θειοφαινίου, χρησιμοποιώντας στερεούς ηλεκτρολύτες αγωγούς πρωτονίων σε συνδυασμό με σύγχρονους στηριγμένους καταλύτες, όπως για παράδειγμα RuS2, MoS2, ή FeSx και MoS2-CoS2 καθώς και μη-στηριγμένους όπως ο Nebula (NiMoW). Η μελέτη επικεντρώθηκε στην επίτευξη ηλεκτροχημικής ενίσχυσης στην HDS του θειοφαινίου υπό συνθήκες ατμοσφαιρικής πίεσης στο θερμοκρασιακό εύρος 250οC-550οC ανάλογα με το στερεό ηλεκτρολύτη (BCN18, CZI ή YSZ). Ηλεκτροχημική Ενίσχυση επιτεύχθηκε σε συνολικά 10 καταλυτικά ηλεκτρόδια. Στην περίπτωση χρήσης πρωτονιακών αγωγών, τιμές προσαύξησης ρυθμού έως 20% και φαρανταϊκής απόδοσης έως ~600 καταγράφησαν, αναδεικνύοντας την ισχυρά μη-φαρανταϊκή συμπεριφορά και το υψηλό ενεργειακό όφελος σε Τ<300oC. Στην περίπτωση των αγωγών ιόντων οξυγόνου (YSZ) προσαύξηση ρυθμού έως και 300% καταγράφηκε με τιμές φαρανταϊκής απόδοσης έως και 0.2 στους 500oC. Electrochemical Promotion of Catalysis (EPOC or Non-Faradaic Electrochemical Modification of Catalytic Activity, NEMCA effect) is a phenomenon where the application of small currents or potentials (±1V) between a catalyst electrode, which is in contact with a solid electrolyte support, and a counter or reference electrode, causes a significant change in catalytic activity in a predictable, reversible and to some extend controllable manner. As hve been shown by numerous surface science and electrochemical techniques, electrochemical promotion is due to electrochemically controlled migration (backspillover) of promoting or poisoning ionic species between the ionic or mixed ionic-electronic conductor support and the gas exposed catalytic surface. Τhe phenomenon has been studied extensively in a variety of catalytic systems (>70) during the last 30 years, while it has been successfully applied in a pilot scale reactor, the monolithic electrochemically promoted reactor (MEPR) in environmental important reactions. In the first chapter, an extended analysis is given of the properties of solid electrolytes, and focused on the yttria-stabilized zirconia (YSZ). Moreover, the concepts of spillover and backspillover, which are used to describe the phenomenon of electrochemical promotion and the metal-support interactions, are discussed in detail. In the second chapter, the fundamentals of Electrochemical Promotion of Catalysis are discussed in the basis of classical promotion, reaction kinetics and the rules of Electrochemical Promotion of Catalysis. In the last chapter, the effect of the electrochemical promotion of catalysis on the hydrodesulfurization (HDS) reaction of sulfur containing model compounds (thiophene) has been investigated, using proton conducting solid electrolytes and state-of-the-art catalysts, e.g. RuS2, MoS2, MoS2-CoS2 and the unsupported state-of-the-art catalyst Nebula (NiMoW). In this study only thiophene, has been used under atmospheric pressure in the temperature range of 250 οC -550οC, depending on the electrolyte (BCN18, CZI or YSZ). Significant Electrochemical Promotion was achieved at 10 different CoMo based catalyst-electrodes. In the case of proton conductors, values of rate enhancement values up to 20% and faradaic efficiency values up to ~600 were achieved, denoting the strongly nonfaradaic behavior and high energy efficiency at T<300oC. In the case of oxygen ion conductors (YSZ) an increase of 300% on the catalytic rate and a faradaic efficiency value of 0.2 was recorded at 500oC. The results show the strong potential of Electrochemical Promotion of Catalysis effect on improving the efficiency of industrial and/or environmental processes with only minimal energy supply. 2013-06-07T09:12:50Z 2013-06-07T09:12:50Z 2012-03-12 2013-06-07 Thesis http://hdl.handle.net/10889/6041 gr Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 12 application/pdf