Ανάλυση οριακής κατάστασης και σεισμικής επάρκειας λίθινων αψίδων

Η παρούσα διατριβή επανεξετάζει την οριακή ανάλυση ευστάθειας των λίθινων αψίδων. Η οριακή ανάλυση ευστάθειας χρησιμοποιείται σήμερα ως το βασικό εργαλείο αποτίμησης της ευστάθειας τόξων και θολωτών κατασκευών από τοιχοποιία, όπως ακριβώς συνέβαινε και τους τελευταίους τέσσερις αιώνες. Παρά την τόσο...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Αλεξάκης, Χαράλαμπος
Άλλοι συγγραφείς: Μακρής, Νικόλαος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2013
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/6145
Περιγραφή
Περίληψη:Η παρούσα διατριβή επανεξετάζει την οριακή ανάλυση ευστάθειας των λίθινων αψίδων. Η οριακή ανάλυση ευστάθειας χρησιμοποιείται σήμερα ως το βασικό εργαλείο αποτίμησης της ευστάθειας τόξων και θολωτών κατασκευών από τοιχοποιία, όπως ακριβώς συνέβαινε και τους τελευταίους τέσσερις αιώνες. Παρά την τόσο μακρόχρονη ιστορία της μεθόδου, δεν έχουν πλήρως διασαφηνιστεί στην επιστημονική κοινότητα θεμελιώδης έννοιες και δεν έχουν σαφώς απαντηθεί ερωτήματα όπως: Ποιες είναι οι φυσικά πραγματοποιήσιμες γραμμές ώθησης και ποιες όχι; Ποια είναι η επίδραση της στερεοτομίας ενός τόξου στην οριακή του ευστάθεια; Ποιος είναι ο ρόλος της αλυσοειδούς καμπύλης και κατά πόσο αυτή είναι μία φυσικά αποδεκτή γραμμή ώθησης; Τι σχέση υπάρχει ανάμεσα στην κλίση της συνισταμένης θλιπτικής δύναμης και στην κλίση της γραμμής ώθησης στο σημείο εφαρμογής της; Η παρούσα διατριβή αναζητά απαντήσεις στα ερωτήματα αυτά, και έχει ως στόχο τη βαθύτερη κατανόηση της οριακής ανάλυσης ευστάθειας των τόξων, με παράλληλη ανάδειξη νέων υπολογιστικών διαδικασιών. Η δομή της παρουσιάζεται συνοπτικά παρακάτω. Στο πρώτο κεφάλαιο γίνεται ιστορική ανάλυση της μεθόδου μέσα από παρουσίαση και σχολιασμό των εργασιών με τη σημαντικότερη συμβολή, από τα μέσα του 17ου αιώνα μέχρι σήμερα. Στο δεύτερο κεφάλαιο επανεξετάζεται ένα από τα πιο κλασικά προβλήματα της μηχανικής: ποιο είναι το ελάχιστο επιτρεπτό πάχος ενός ημικυκλικού τόξου υπό τη δράση του ιδίου βάρους του για να είναι ευσταθές. Παράλληλα απαντώνται τα ερωτήματα που τέθηκαν παραπάνω αναπτύσσοντας νέες κλειστές μαθηματικές εκφράσεις των γραμμών ώθησης μέσω γεωμετρικής προσέγγισης, αλλά και μέσω του λογισμού των μεταβολών. Στο τρίτο κεφάλαιο χρησιμοποιείται παρόμοια διαδικασία για την ανάλυση της γενικής περίπτωσης των ελλειπτικών τόξων, οποιουδήποτε γεωμετρικού λόγου ύψος προς βάση, καθώς δεν είναι διαθέσιμα αναλυτικά αποτελέσματα στη διεθνή βιβλιογραφία, όπως συμβαίνει για τα κυκλικά τόξα. Στο τέταρτο κεφάλαιο εξετάζεται η οριακή ευστάθεια κυκλικών τόξων οποιασδήποτε γωνίας εναγκαλισμού, υπό την ταυτόχρονη δράση του ιδίου βάρους τους και σταθερής οριζόντιας εδαφικής επιτάχυνσης, ενώ υπολογίζεται με ακρίβεια η μορφή που θα έχει ο επικείμενος μηχανισμός κατάρρευσης μαζί με το οριακό πάχος, συναρτήσει της σεισμικής φόρτισης. Τα αποτελέσματα της μαθηματικής ανάλυσης (Κεφ. 2-4) επιβεβαιώνουν την ακρίβεια του λογισμικού που αναπτύχθηκε για τις ανάγκες της διατριβής, καθώς και τα αποτελέσματα που προκύπτουν από εμπορικό λογισμικό της μεθόδου των διακριτών στοιχείων. Στο πέμπτο κεφάλαιο γίνεται εφαρμογή και σύγκριση των πιο αντιπροσωπευτικών υπολογιστικών μεθόδων που απαντώνται σήμερα στη βιβλιογραφία για την αποτίμηση της ευστάθειας και φέρουσας ικανότητας της υπόγειας Θολωτής Διόδου του Σταδίου της Αρχαίας Νεμέας, ενώ η οριακή ανάλυση ευστάθειας αναδεικνύεται ως ένα μοναδικό εργαλείο για την κατανόηση της αλληλεπίδρασης της κατασκευής με το περιβάλλον έδαφος. Επιπλέων των συμπερασμάτων στο τέλος κάθε κεφαλαίου (Κεφ. 2 έως 5), στο έκτο κεφάλαιο παρουσιάζονται τα πιο σημαντικά συμπεράσματα και η συνεισφορά της παρούσας διατριβής.