Σχεδίαση κυκλωμάτων με πλεονάζουσες και μη αναπαραστάσεις για το αριθμητικό σύστημα υπολοίπων

Η υλοποίηση αποδοτικών αριθμητικών κυκλωμάτων αποτελεί ένα ανοικτό πεδίο έρευνας καθώς η συνεχής εξέλιξη της τεχνολογίας απαιτεί την επανεκτίμηση των μεθόδων σχεδίασής τους, ενώ παράλληλα δημιουργεί νέους τομείς εφαρμογής τους. Ο τεράστιος όγκος πληροφορίας και η ανάγκη γρήγορης επεξεργασίας της έχε...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Βασσάλος, Ευάγγελος
Άλλοι συγγραφείς: Μπακάλης, Δημήτριος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2013
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/6353
Περιγραφή
Περίληψη:Η υλοποίηση αποδοτικών αριθμητικών κυκλωμάτων αποτελεί ένα ανοικτό πεδίο έρευνας καθώς η συνεχής εξέλιξη της τεχνολογίας απαιτεί την επανεκτίμηση των μεθόδων σχεδίασής τους, ενώ παράλληλα δημιουργεί νέους τομείς εφαρμογής τους. Ο τεράστιος όγκος πληροφορίας και η ανάγκη γρήγορης επεξεργασίας της έχει οδηγήσει στην ανάγκη αύξησης της συχνότητας λειτουργίας των αντίστοιχων κυκλωμάτων. Μεγάλης σημασίας παραμένει επίσης η ανάγκη για τη μείωση της κατανάλωσης ισχύος των συστημάτων αυτών, αλλά και του κόστους τους, που συνδέονται άμεσα με την επιφάνεια ολοκλήρωσής τους. Η ικανοποίηση των παραμέτρων αυτών επιτάσσει σε διάφορες περιπτώσεις την υιοθέτηση αριθμητικών συστημάτων, πέραν του συμβατικού δυαδικού συστήματος. Χαρακτηριστικά παραδείγματα αποτελούν το Αριθμητικό Σύστημα Υπολοίπων (Residue Number System – RNS) όπως επίσης και τα αριθμητικά συστήματα πλεοναζουσών αναπαραστάσεων (redundant number systems). Η διδακτορική αυτή διατριβή ασχολείται με την υλοποίηση αποδοτικών κυκλωμάτων για το Αριθμητικό Σύστημα Υπολοίπων, με την έρευνα να επικεντρώνεται στην υιοθέτηση τόσο πλεοναζουσών όσο και μη-πλεοναζουσών αναπαραστάσεων στα διάφορα κανάλια επεξεργασίας του. Το πρώτο μέρος της διατριβής έχει ως στόχο τη σχεδίαση αποδοτικών κυκλωμάτων υπολοίπων με χρήση μη-πλεοναζουσών αναπαραστάσεων τόσο για τις κύριες-βασικές αριθμητικές πράξεις (πρόσθεση, πολλαπλασιασμός) όσο και για τις δευτερεύουσες-βοηθητικές (αφαίρεση, ύψωση σε δύναμη) πράξεις. Συγκεκριμένα, παρουσιάζονται κυκλώματα αφαίρεσης και πρόσθεσης/αφαίρεσης για κανάλια υπολοίπου της μορφής 2^n+-1, κυκλώματα πολλαπλασιασμού με σταθερά για το σύνολο διαιρετών {2^n-1, 2^n, 2^n+1} καθώς και κυκλώματα Booth πολλαπλασιασμού προγραμματιζόμενης λογικής για τα κανάλια υπολοίπου 2^n+-1. Επιπλέον, παρουσιάζονται κυκλώματα ύψωσης στον κύβο για το κανάλι υπολοίπου 2^n-1. Προτείνεται επίσης μια οικογένεια αριθμητικών κυκλωμάτων (αθροιστές, αφαιρέτες, πολλαπλασιαστές, κυκλώματα ύψωσης στο τετράγωνο) υπολοίπου 2^n+1 για την αναπαράσταση ελάττωσης κατά 1, που ενσωματώνουν τη μετατροπή του αποτελέσματος στην κανονική αναπαράσταση μέσα στην αρχιτεκτονική τους, ενώ παρουσιάζεται και μία ενιαία μεθοδολογία σχεδίασης κυκλωμάτων ανάστροφης μετατροπής για σύνολα διαιρετών με κανάλια της μορφής 2^n+1 που υιοθετούν την αναπαράσταση ελάττωσης κατά 1. Τέλος, διερευνούνται και οι διαιρέτες της μορφής 2^n-2 και προτείνονται για αυτούς αποδοτικές αρχιτεκτονικές κυκλωμάτων πρόσθεσης, πολλαπλασιασμού, ύψωσης στο τετράγωνο και ευθείας μετατροπής. Στο δεύτερο μέρος της διατριβής το ενδιαφέρον εστιάζεται σε μία διαφορετική κατηγορία αναπαραστάσεων, οι οποίες παρέχουν περισσότερους από ένα δυνατούς τρόπους κωδικοποίησης των εντέλων τους. Οι πλεονάζουσες αυτές αναπαραστάσεις παρουσιάζουν συγκεκριμένα χαρακτηριστικά, όπως η δυνατότητα εξισορρόπησης ταχύτητας και επιφάνειας υλοποίησης. Στη διατριβή εξετάζονται τρεις πλεονάζουσες αναπαραστάσεις για το Αριθμητικό Σύστημα Υπολοίπων με κανάλια διαιρετών της μορφής 2^n+-1 και παρουσιάζεται μία γενικευμένη μεθοδολογία διαχείρισης των ψηφίων τους, η οποία εφαρμόζεται στη σχεδίαση κυκλωμάτων μετατροπής. Στο τελευταίο μέρος περιγράφονται δύο εφαρμογές συστημάτων που βασίζονται στο Αριθμητικό Σύστημα Υπολοίπων. Αναλυτικότερα, σχεδιάζεται και υλοποιείται ένα σύστημα ανίχνευσης ακμών σε εικόνα με ένα στάδιο προ-επεξεργασίας για μείωση του θορύβου καθώς και τρία φίλτρα πεπερασμένης κρουστικής απόκρισης.