Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο

Το π–κυμένιο (p–ισοπρόπυλο τολουόλιο) είναι ένα πολύ σημαντικό προϊόν με μεγάλο εμπορικό ενδιαφέρον, καθώς αποτελεί κύριο συστατικό πολλών καλλυντικών, αρωμάτων, φαρμακευτικών προϊόντων, καθώς και την πρώτη ύλη για την παραγωγή της p–κρεσόλης. Η τρέχουσα διαδικασία παραγωγής του π–κυμενίου είναι η κ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Καμίτσου, Μαρία
Άλλοι συγγραφείς: Λυκουργιώτης, Αλέξιος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2013
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/6357
id nemertes-10889-6357
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic π–κυμένιο
α-λεμονένιο
Τιτάνια μεγάλης ειδικής επιφάνειας
Οξειδικοί καταλύτες
p-cymene
a-limonene
High surface area titania
Oxide catalysts
SiO2
MCM-41
NaY
γ-Al2O3
541.395
spellingShingle π–κυμένιο
α-λεμονένιο
Τιτάνια μεγάλης ειδικής επιφάνειας
Οξειδικοί καταλύτες
p-cymene
a-limonene
High surface area titania
Oxide catalysts
SiO2
MCM-41
NaY
γ-Al2O3
541.395
Καμίτσου, Μαρία
Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
description Το π–κυμένιο (p–ισοπρόπυλο τολουόλιο) είναι ένα πολύ σημαντικό προϊόν με μεγάλο εμπορικό ενδιαφέρον, καθώς αποτελεί κύριο συστατικό πολλών καλλυντικών, αρωμάτων, φαρμακευτικών προϊόντων, καθώς και την πρώτη ύλη για την παραγωγή της p–κρεσόλης. Η τρέχουσα διαδικασία παραγωγής του π–κυμενίου είναι η κατά Friedel–Crafts αλκυλίωση του τολουολίου με προπυλένιο ή προπανόλη–2, η οποία χρησιμοποιεί μεγάλες ποσότητες επιβλαβών οξέων, προκαλώντας πολλά προβλήματα χειρισμού στους εργαζόμενους με αυτό, προβλήματα διάβρωσης και προβλήματα διάθεσης των παραγόμενων αποβλήτων. Τα τελευταία χρόνια, η Πράσινη Χημεία έχει παρουσιασθεί ως η νέα προσέγγιση της Χημείας για την πρόληψη της μόλυνσης του περιβάλλοντος, καθώς και του σχεδιασμού χημικών προϊόντων και διεργασιών που είναι περισσότερο φιλικά προς το περιβάλλον. Η κατάλυση αποτελεί μία από τις κύριες αρχές, αλλά ταυτόχρονα και εργαλείο της Πράσινης Χημείας. Πιο συγκεκριμένα η ετερογενής κατάλυση, που εξυπηρετεί τους στόχους της Πράσινης Χημείας, λόγω της εξάλειψης της ανάγκης διαχωρισμού του παραγόμενου προϊόντος από τον καταλύτη. Επίσης, μία άλλη βασική παράμετρος της Πράσινης Χημείας είναι η χρήση της βιομάζας, ως ανανεώσιμη πρώτη ύλη, με σκοπό την παραγωγή ενέργειας και χημικών προϊόντων. Στην παρούσα εργασία, μελετάται η δυνατότητα καταλυτικής παραγωγής π–κυμενίου, βασιζόμενη στις αρχές της Πράσινης Χημείας. Για το σκοπό αυτό χρησιμοποιείται ως αντιδρών το α–λεμονένιο, ένα μονοτερπένιο το οποίο αποτελεί ανανεώσιμη πρώτη ύλη, καθώς είναι παραπροϊόν της βιομηχανίας χυμών λεμονιού και πορτοκαλιού, καθώς και της βιομηχανίας χάρτου και πολτού. Πιο αναλυτικά, μελετήθηκε η καταλυτική συμπεριφορά οξειδίων με μεγάλη ειδική επιφάνεια, όπως η SiO2, το MCM–41, ο ζεόλιθος NaY, η γ–Al2O3 και δύο δείγματα TiO2, με διαφορετικές ειδικές επιφάνειες, στην αντίδραση μετατροπής του λεμονενίου προς π–κυμένιο. Επίσης, ερευνήθηκε η επίδραση στη διεργασία τόσο της θερμοκρασίας της αντίδρασης, όσο και της σύστασης της ατμόσφαιρας κάτω από την οποία διεξαγόταν η αντίδραση. Τα πειράματα διεξήχθησαν σε αντιδραστήρα σταθερής κλίνης – ατμοσφαιρικής πίεσης, ενώ για την ανάλυση των λαμβανόμενων προϊόντων χρησιμοποιήθηκε αέριος χρωματογράφος – φασματογράφος μάζας (GC–MS). Από τους καταλύτες που μελετήθηκαν ο πιο αποτελεσματικός αποδείχθηκε η τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ακολουθούμενη από την τιτάνια με την χαμηλότερη ειδική επιφάνεια, τον ζεόλιθο NaY και τη γ–Al2O3. Τόσο η σίλικα όσο και το MCM–41 παρουσίασαν μάλλον αμελητέα δραστικότητα. Επίσης, παρατηρήθηκε ότι η απόδοση σε π–κυμένιο αυξανόταν γενικά με τη θερμοκρασία, ενώ δεν επηρεαζόταν πρακτικά από την ατμόσφαιρα που διεξαγόταν η αντίδραση. Τέλος, στους 300 οC και χρησιμοποιώντας την τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ως καταλύτη επιτεύχθηκε 90% απόδοση για το π–κυμένιο και 100% μετατροπή για το λεμονένιο. Η αυξημένη απόδοση της τιτάνιας αποδόθηκε σε επιτυχή συγκερασμό ανάμεσα στη σχετικά μεγάλη οξύτητα Brönsted και στη σχετικά εύκολη μεταβολή του λόγου Ti(IV)/Ti(III) κατά τη διάρκεια της αντίδρασης. Τα κινητικά αποτελέσματα επέτρεψαν να γραφεί ένα κινητικό σχήμα για τη διεργασία.
author2 Λυκουργιώτης, Αλέξιος
author_facet Λυκουργιώτης, Αλέξιος
Καμίτσου, Μαρία
format Thesis
author Καμίτσου, Μαρία
author_sort Καμίτσου, Μαρία
title Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
title_short Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
title_full Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
title_fullStr Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
title_full_unstemmed Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
title_sort ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο
publishDate 2013
url http://hdl.handle.net/10889/6357
work_keys_str_mv AT kamitsoumaria anaptyxēstereōnkatalytōngiatēnparagōgēpkymeniouapolemonenio
AT kamitsoumaria developmentofsolidcatalystsfortheproductionofpcymenefromlimonene
_version_ 1771297278104961024
spelling nemertes-10889-63572022-09-05T20:50:53Z Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο Development of solid catalysts for the production of p–cymene from limonene Καμίτσου, Μαρία Λυκουργιώτης, Αλέξιος Λυκουργιώτης, Αλέξιος Κορδούλης, Χρήστος Ματραλής, Χαράλαμπος Kamitsou, Maria π–κυμένιο α-λεμονένιο Τιτάνια μεγάλης ειδικής επιφάνειας Οξειδικοί καταλύτες p-cymene a-limonene High surface area titania Oxide catalysts SiO2 MCM-41 NaY γ-Al2O3 541.395 Το π–κυμένιο (p–ισοπρόπυλο τολουόλιο) είναι ένα πολύ σημαντικό προϊόν με μεγάλο εμπορικό ενδιαφέρον, καθώς αποτελεί κύριο συστατικό πολλών καλλυντικών, αρωμάτων, φαρμακευτικών προϊόντων, καθώς και την πρώτη ύλη για την παραγωγή της p–κρεσόλης. Η τρέχουσα διαδικασία παραγωγής του π–κυμενίου είναι η κατά Friedel–Crafts αλκυλίωση του τολουολίου με προπυλένιο ή προπανόλη–2, η οποία χρησιμοποιεί μεγάλες ποσότητες επιβλαβών οξέων, προκαλώντας πολλά προβλήματα χειρισμού στους εργαζόμενους με αυτό, προβλήματα διάβρωσης και προβλήματα διάθεσης των παραγόμενων αποβλήτων. Τα τελευταία χρόνια, η Πράσινη Χημεία έχει παρουσιασθεί ως η νέα προσέγγιση της Χημείας για την πρόληψη της μόλυνσης του περιβάλλοντος, καθώς και του σχεδιασμού χημικών προϊόντων και διεργασιών που είναι περισσότερο φιλικά προς το περιβάλλον. Η κατάλυση αποτελεί μία από τις κύριες αρχές, αλλά ταυτόχρονα και εργαλείο της Πράσινης Χημείας. Πιο συγκεκριμένα η ετερογενής κατάλυση, που εξυπηρετεί τους στόχους της Πράσινης Χημείας, λόγω της εξάλειψης της ανάγκης διαχωρισμού του παραγόμενου προϊόντος από τον καταλύτη. Επίσης, μία άλλη βασική παράμετρος της Πράσινης Χημείας είναι η χρήση της βιομάζας, ως ανανεώσιμη πρώτη ύλη, με σκοπό την παραγωγή ενέργειας και χημικών προϊόντων. Στην παρούσα εργασία, μελετάται η δυνατότητα καταλυτικής παραγωγής π–κυμενίου, βασιζόμενη στις αρχές της Πράσινης Χημείας. Για το σκοπό αυτό χρησιμοποιείται ως αντιδρών το α–λεμονένιο, ένα μονοτερπένιο το οποίο αποτελεί ανανεώσιμη πρώτη ύλη, καθώς είναι παραπροϊόν της βιομηχανίας χυμών λεμονιού και πορτοκαλιού, καθώς και της βιομηχανίας χάρτου και πολτού. Πιο αναλυτικά, μελετήθηκε η καταλυτική συμπεριφορά οξειδίων με μεγάλη ειδική επιφάνεια, όπως η SiO2, το MCM–41, ο ζεόλιθος NaY, η γ–Al2O3 και δύο δείγματα TiO2, με διαφορετικές ειδικές επιφάνειες, στην αντίδραση μετατροπής του λεμονενίου προς π–κυμένιο. Επίσης, ερευνήθηκε η επίδραση στη διεργασία τόσο της θερμοκρασίας της αντίδρασης, όσο και της σύστασης της ατμόσφαιρας κάτω από την οποία διεξαγόταν η αντίδραση. Τα πειράματα διεξήχθησαν σε αντιδραστήρα σταθερής κλίνης – ατμοσφαιρικής πίεσης, ενώ για την ανάλυση των λαμβανόμενων προϊόντων χρησιμοποιήθηκε αέριος χρωματογράφος – φασματογράφος μάζας (GC–MS). Από τους καταλύτες που μελετήθηκαν ο πιο αποτελεσματικός αποδείχθηκε η τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ακολουθούμενη από την τιτάνια με την χαμηλότερη ειδική επιφάνεια, τον ζεόλιθο NaY και τη γ–Al2O3. Τόσο η σίλικα όσο και το MCM–41 παρουσίασαν μάλλον αμελητέα δραστικότητα. Επίσης, παρατηρήθηκε ότι η απόδοση σε π–κυμένιο αυξανόταν γενικά με τη θερμοκρασία, ενώ δεν επηρεαζόταν πρακτικά από την ατμόσφαιρα που διεξαγόταν η αντίδραση. Τέλος, στους 300 οC και χρησιμοποιώντας την τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ως καταλύτη επιτεύχθηκε 90% απόδοση για το π–κυμένιο και 100% μετατροπή για το λεμονένιο. Η αυξημένη απόδοση της τιτάνιας αποδόθηκε σε επιτυχή συγκερασμό ανάμεσα στη σχετικά μεγάλη οξύτητα Brönsted και στη σχετικά εύκολη μεταβολή του λόγου Ti(IV)/Ti(III) κατά τη διάρκεια της αντίδρασης. Τα κινητικά αποτελέσματα επέτρεψαν να γραφεί ένα κινητικό σχήμα για τη διεργασία. P–cymene is a very important product with great commercial interest because of its use as a main ingredient of cosmetics, perfumes and pharmaceutical products as well as raw material for the production of p–cresol. Current production is achieved by using the Friedel–Crafts reaction of toluene with propylene or propanol–2 which uses large quantities of harmful acids which, in turn, leads to industrial accidents, corrosion problems and the general difficulty of handling toxic wastes. A new concept of chemistry has been developed for confronting environmental problems. Green Chemistry is related to products and processes that are environmentally friendly. One of the basic tools of Green Chemistry is catalysis, mainly heterogeneous catalysis, because it allows the easy separation of the catalysts used from the final product. Moreover, following the principles of the Green Chemistry, biomass should be used in the production of renewable energy and chemical products. The present Thesis deals with the catalytic production of p–cymene based on the principles of Green Chemistry. In particular, we use a–limonene, by–product of the juice of orange and lemon industry as well as the paper industry, to produce p–cymene. A number of oxides with large specific surface area, such as SiO2, MCM–41, zeolite NaY, γ–Al2O3 and two samples of TiO2, were studied as catalysts. The effect of the reaction temperature and the composition of the atmosphere were also studied. All experiments were conducted on a fixed bed micro–reactor operating under atmospheric pressure coupled with an on–line Gas Chromatograph–Mass Spectrometer (GC – MS). The titania with the relatively high specific surface area was proved to be the most efficient catalyst among those studied. The following activity series has been obtained: «high surface area titania > small surface area titania > zeolite NaY > γ–Al2O3 > MCM–41 > SiO2». Negligible activity is exhibited by MCM–41 and SiO2. The percentage yield for p–cymene increases with temperature whereas is practically independent from the carrier gas. Very high percentage yield for p–cymene was obtained at 300οC over the high specific surface area titania (~90%). Complete transformation of a–limonene was obtained over the above catalyst at the same temperature. The very high activity obtained over this catalyst was attributed to good compromise between high acidity and easy transformation of the ratio Ti(IV)/Ti(III) during reaction. The kinetic results allow the clarification of the reaction scheme. 2013-10-11T19:11:16Z 2013-10-11T19:11:16Z 2013-07-09 2013-10-11 Thesis http://hdl.handle.net/10889/6357 gr Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf