Ανάπτυξη και χαρακτηρισμός καινοτόμων καταλυτών για την αντίδραση μετατόπισης του CO με ατμό σε χαμηλές θερμοκρασίες και κινητική μελέτη

Στη παρούσα εργασία μελετάται η ανάπτυξη και ο χαρακτηρισμός καινοτόμων υποστηριγμένων καταλυτών ευγενών μετάλλων για την αντίδραση μετατόπισης του CO με ατμό (Water Gas Shift, WGS) σε χαμηλές θερμοκρασίες καθώς και η κινητική της εν λόγω αντίδρασης. Εξετάστηκε η επίδραση των φυσικοχημικών και μορφ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Παναγιωτοπούλου, Παρασκευή
Άλλοι συγγραφείς: Κονταρίδης, Δημήτρης
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/706
Περιγραφή
Περίληψη:Στη παρούσα εργασία μελετάται η ανάπτυξη και ο χαρακτηρισμός καινοτόμων υποστηριγμένων καταλυτών ευγενών μετάλλων για την αντίδραση μετατόπισης του CO με ατμό (Water Gas Shift, WGS) σε χαμηλές θερμοκρασίες καθώς και η κινητική της εν λόγω αντίδρασης. Εξετάστηκε η επίδραση των φυσικοχημικών και μορφολογικών χαρακτηριστικών της διεσπαρμένης μεταλλικής φάσης (Pt, Pd, Ru, Rh) και του φορέα (οξείδια μετάλλων) καθώς και της χρήσης προωθητών (αλκάλια, αλκαλικές γαίες) στην καταλυτική ενεργότητα. Μεγαλύτερη δραστικότητα παρατηρήθηκε για καταλύτες Pt υποστηριγμένους σε αναγώγιμα οξείδια, κυρίως TiO2 και CeO2. Η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, είναι ανεξάρτητη από τη φύση του μετάλλου, όταν τα ευγενή μέταλλα διασπείρονται στους φορείς TiO2 και CeO2. Αντιθέτως για τους καταλύτες Μ/Al2O3, η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, εξαρτάται από τη φύση του μετάλλου, υποδεικνύοντας ότι η αντίδραση WGS, σε καταλύτες ευγενών μετάλλων υποστηριγμένων σε μη αναγώγιμους φορείς, ακολουθεί διαφορετικό μηχανισμό. Για καταλύτες Pt/TiO2, Ru/TiO2, Pt/CeO2 και Pt/Al2O3 η μετατροπή του CO αυξάνεται με αύξηση της περιεκτικότητας του καταλύτη σε μέταλλο. Ωστόσο ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο μετάλλου και η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, δεν εξαρτώνται από τη φόρτιση (0-5 wt.%) και το μέγεθος των κρυσταλλιτών (1.3-16nm) του μετάλλου. Η επίδραση των μορφολογικών χαρακτηριστικών του φορέα στην καταλυτική ενεργότητα μελετήθηκε σε καταλύτες Pt/TiO2, και Pt/CeO2. Για τους καταλύτες Pt/TiO2 βρέθηκε ότι η μετατροπή του CO σε χαμηλές θερμοκρασίες βελτιώνεται σημαντικά όταν ο Pt διασπείρεται σε φορείς με μικρότερο μέγεθος κρυσταλλιτών. Η συχνότητα αναστροφής (TOF) του CO αυξάνεται κατά δύο τάξεις μεγέθους καθώς μειώνεται το μέγεθος των κρυσταλλιτών του TiO2 από 35 σε 16 nm, με παράλληλη μείωση της ενέργειας ενεργοποίησης από 16.9 έως 11.9 kcal/mol. Βρέθηκε, με χρήση τεχνικών θερμοπρογραμματιζόμενης αναγωγής (TPR) και φασματοσκοπίας Raman και FTIR, ότι η παρατηρούμενη αύξηση της ενεργότητας καταλυτών Pt/TiO2 οφείλεται σε αύξηση της αναγωγιμότητας του φορέα TiO2, η οποία αυξάνεται με μείωση του μεγέθους των κρυσταλλιτών του. Τα αποτελέσματα παρέχουν σημαντικές ενδείξεις για τη συμμετοχή του φορέα στο μηχανισμό της αντίδρασης WGS είτε άμεσα, μέσω του οξειδοαναγωγικού (redox) μηχανισμού, είτε έμμεσα, μέσω του συνδυαστικού (associative) μηχανισμού. Και στις δύο περιπτώσεις, φαίνεται ότι η παρουσία μερικώς ανηγμένων σωματιδίων TiO2 στην περιοχή κοντά στο διεσπαρμένο Pt, είναι απαραίτητη για την παραγωγή ενεργών κέντρων στη διεπιφάνεια μετάλλου/φορέα. Σε αντίθεση με τους καταλύτες Pt/TiO2, για τους καταλύτες Pt/CeO2 βρέθηκε ότι τόσο η συχνότητα αναστροφής του CO όσο και η ενέργεια ενεργοποίησης της αντίδρασης δεν εξαρτώνται σημαντικά από τα μορφολογικά χαρακτηριστικά του φορέα, τουλάχιστον υπό τις παρούσες πειραματικές συνθήκες. Η ενίσχυση του φορέα με κατάλληλη ποσότητα αλκαλίων (Na, K, Li, Cs) οδηγεί σε σημαντική αύξηση της ενεργότητας των καταλυτών Pt/TiO2. Βρέθηκε ότι σε όλες τις περιπτώσεις, η συχνότητα αναστροφής του CO περνάει από μέγιστο σε καταλύτες με περιεκτικότητα Pt:Αλκάλιο=1:1. Βέλτιστη συμπεριφορά παρουσίασε ο φορέας ενισχυμένος με Na, για τον οποίο παρατηρήθηκε ότι ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt τριπλασιάζεται καθώς αυξάνεται η περιεκτικότητα σε Na από 0 σε 0.06 wt.%. Η προσθήκη αλκαλικών γαιών (CaO, SrO, BaO, MgO) στο φορέα οδηγεί σε σημαντική βελτίωση της καταλυτικής ενεργότητας των καταλυτών Pt/TiO2. Βέλτιστη συμπεριφορά παρουσιάζουν οι καταλύτες ενισχυμένοι με CaO και SrO σε περιεκτικότητα 2 wt.%, οι οποίοι έχουν υποστεί θερμική κατεργασία στους 600OC. Αύξηση της περιεκτικότητας CaO από 0 σε 4 wt.% έχει σαν αποτέλεσμα ο εγγενής ρυθμός της αντίδρασης να περνάει από μέγιστο, για το δείγμα με 2 wt.% CaO, του οποίου η συχνότητα αναστροφής του CO είναι ~2.5 φορές μεγαλύτερη συγκριτικά με το μη ενισχυμένο δείγμα. Τα αποτελέσματα των πειραμάτων Η2-TPD έδειξαν ότι, για καταλύτες ενισχυμένους με Na, Cs, CaO, WO3, καθώς και για καταλύτες M/TiO2 (M:Pt, Rh, Ru, Pd), ο ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt εξαρτάται από την ισχύ των θέσεων ρόφησης στη διεπιφάνεια μετάλλου/φορέα και περνάει από μέγιστο για μία ορισμένη τιμή της θερμοκρασίας εκρόφησης του υδρογόνου από τις θέσεις αυτές. Τα αποτελέσματα των πειραμάτων FTIR έδειξαν ότι η ενίσχυση των καταλυτών Pt/TiO2 με Na, Cs και CaO, οδηγεί σε αύξηση του πληθυσμού των ροφημένων ειδών CO στη διεπιφάνεια μετάλλου/φορέα. Το αντίθετο παρατηρείται για τον ενισχυμένο με WO3 καταλύτη. Για τους καταλύτες αυτούς καθώς και για τους Rh/TiO2 και M/Al2O3 (M: Pt, Ru, Pd), βρέθηκε ότι ο ρυθμός της αντίδρασης WGS αυξάνεται με ελάττωση της θερμοκρασίας διάσπασης των φορμικών ειδών. Τα αποτελέσματα υποδεικνύουν ότι η καταλυτική συμπεριφορά καθορίζεται σε μεγάλο βαθμό από τα φυσικοχημικά χαρακτηριστικά του φορέα, με τις καταλυτικά ενεργές θέσεις να εντοπίζονται στη διεπιφάνεια. Ο πληθυσμός και η ισχύς ρόφησης των ενεργών κέντρων και, επομένως, η καταλυτική ενεργότητα τροποποιούνται από τις αλληλεπιδράσεις μετάλλου/φορέα και από την ύπαρξη προωθητών. Η κινητική μελέτη της αντίδρασης WGS, σε καταλύτες Pt/TiO2 και Pt/0.34%Cs-TiO2, έδειξε ότι αύξηση της περιεκτικότητας του CO ή του Η2Ο στη τροφοδοσία οδηγεί σε αύξηση του ρυθμού, προσθήκη Η2 στην τροφοδοσία μειώνει σημαντικά τον ρυθμό ενώ το CO2 αφήνει το ρυθμό πρακτικά ανεπηρέαστο. Βρέθηκε ότι η αντίδραση είναι τάξης 0.5 ως προς CO, 1 ως προς Η2Ο, ~0 ως προς CO2 και ~-0.7 ως προς Η2. Τα κινητικά αποτελέσματα και για τους δύο καταλύτες προσαρμόζονται ικανοποιητικά σε εξίσωση ρυθμού που βασίζεται σε μηχανισμό ο οποίος περιλαμβάνει ρόφηση του H2O στο φορέα, ρόφηση των CO, Η2Ο, CO2 και Η2 στο μέταλλο, σχηματισμό ενδιάμεσων φορμικών ειδών στην επιφάνεια του φορέα και εκρόφηση των προϊόντων CO2 και H2. Τέλος μελετήθηκε η επίδραση του χρόνου επαφής στη συμπεριφορά καταλυτών 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaO-TiO2(Cal.600OC) και ενός εμπορικού καταλύτη και βρέθηκε ότι αύξηση του χρόνου επαφής (W/F) από 0.03 έως 0.20 × 3 g s/cm , οδηγεί σε σταδιακή αύξηση της μετατροπής του CO. Οι καταλύτες αυτοί υποβλήθησαν σε πειράματα μακροχρόνιας σταθερότητας, σε συνθήκες αντίδρασης, και από τα αποτελέσματα φαίνεται ότι η μετατροπή του CO παραμένει πρακτικά σταθερή για συνολικό χρόνο αντίδρασης περίπου 60 ώρες. Τα αποτελέσματα της παρούσας εργασίας μπορούν να χρησιμοποιηθούν για το «σχεδιασμό» και την ανάπτυξη καταλυτών οι οποίοι θα εκπληρώνουν τις προϋποθέσεις για χρήση σε εφαρμογές παραγωγής υδρογόνου για την τροφοδοσία κυψελίδων καυσίμου.