Manufacturing and experimental investigation of green composite materials

The aim of the present thesis is to explore sustainable low cost environmentally friendly composite materials. It is a step by step experimental research. Firstly, taking under consideration the so far commercial available non-organic materials used as reinforcement and the petroleum based resins...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Κουτσομητοπούλου, Αναστασία
Άλλοι συγγραφείς: Παπανικολάου, Γιώργιος
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2014
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/7245
Περιγραφή
Περίληψη:The aim of the present thesis is to explore sustainable low cost environmentally friendly composite materials. It is a step by step experimental research. Firstly, taking under consideration the so far commercial available non-organic materials used as reinforcement and the petroleum based resins used as matrices, composite materials were fabricated and mechanically characterized. Different components in micro- and nano- scale were combined. Afterwards, the non-organic materials used as reinforcements were substituted by different types of non conventional natural-based fillers. The fillers (corn starch and olive pit granules) were in powder form, derived from agricultural local resources and additionally flax fabric used to produce laminated composites. All the semi-green epoxy composites were characterized by means of three-point bending testing. Moreover, the manufactured composites were induced in several sources of damage and their residual properties were extensively investigated. More precisely, the effect of the strain-rate and low velocity impact as well as of thermal fatigue, on the mechanical properties of the olive pit and the flax fabric reinforced resin was studied. Since, conventional and semi-green composite materials were fabricated and experimentally investigated, the final objective of the present thesis was to produce novel green composites materials by substituting the petroleum-based epoxy resin with a biodegradable derived from natural resources biopolyester. In order to accomplish this target, polylactic acid (PLA) was combined with olive pits in powder form at different concentrations. Olive pits, is almost unknown non-traditional filler to composites, obtained during the oil extraction process. It is a raw material characterized by its low cost and its abundance, since it consists a waste product of the olive oil industry. In order to successfully accomplish this part of research, experiments were taken place in France at the CMGD (Centre des Matériaux de Grande Diffusion) Institute of the École Nationale Supérieure des Mines d’ Alés, under the guidance of Prof. A. Bergeret within the framework of research cooperation with the main supervisor of this thesis, Prof. G. Papanicolaou. The most important feature of the present green composites is their satisfactory mechanical and thermal performance in combination with their complete biodegradability. The PLA/olive pit composites could be applied to various components with moderate strength such as automotive interiors, interior building applications, durable goods, serviceware and food packaging material The aim of this part of the study was to investigate the effect of three types of olive pit powder at different weights fractions on the physical and mechanical properties of polylactide (PLA) matrix composites. For the preparation of the powder, two different grinding procedures were applied, producing three types of olive pit powder. Various measurements were accomplished to determine characteristics such as the density and the size distribution and the shape of the powder. Different PLA/ olive pits powder composites were manufactured by extrusion and injection molding. A comparative study between the different composites was made in order to investigate the matrix-filler interactions, occurring between the PLA and olive pit granules and their overall physical, mechanical and thermomechanical properties were investigated by means of TGA, FT-IR, DSC, SEM, flexural and uni-axial tensile testing. Finally, theoretical predictive models were applied in most of the composite materials manufactured in the present work. These models making use of minimal number of experimental results can satisfactorily predict the residual properties of damaged materials, irrespectively of the type of the material investigated and the damage source. Namely, the Modulus Predictive Model (ΜPM), the Residual Properties Model (RPM) and the Residual Strength after Impact Model (RSIM), have been successfully applied. A big number of interesting conclusions have been derived from the present work. However, a general conclusion is that a totally green composite with useful properties and applications is a promising target for the humanity and the planet survivability.