Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού

Στα πλαίσια αυτής της διδακτορικής διατριβής μελετήθηκαν τόσο το κρυπτογραφικό σχήμα του RSA όσο και τα διαφορά σχήματα κρυπτογραφίας ελλειπτικών καμπύλων με στόχο την πρόταση μιας αποδοτικής, σε ταχύτητα και απαιτούμενους πόρους υλικού, μεθοδολογία σχεδιασμού τους. Σε αυτή τη μεθοδολογία σχεδιασμού...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Φούρναρης, Απόστολος
Άλλοι συγγραφείς: Κουφοπαύλου, Οδυσσέας
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/745
id nemertes-10889-745
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Σχεδιασμός υλικού VLSI
Κρυπτογραφία δημοσίου κλειδιού
Κρυπτογραφία ελλειπτικών καμπύλων
Εφαρμογές σε πεπερασμένα σώματα
Αριθμητική υπολογιστών
005.82
spellingShingle Σχεδιασμός υλικού VLSI
Κρυπτογραφία δημοσίου κλειδιού
Κρυπτογραφία ελλειπτικών καμπύλων
Εφαρμογές σε πεπερασμένα σώματα
Αριθμητική υπολογιστών
005.82
Φούρναρης, Απόστολος
Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
description Στα πλαίσια αυτής της διδακτορικής διατριβής μελετήθηκαν τόσο το κρυπτογραφικό σχήμα του RSA όσο και τα διαφορά σχήματα κρυπτογραφίας ελλειπτικών καμπύλων με στόχο την πρόταση μιας αποδοτικής, σε ταχύτητα και απαιτούμενους πόρους υλικού, μεθοδολογία σχεδιασμού τους. Σε αυτή τη μεθοδολογία σχεδιασμού δίνεται μεγάλο βάρος στη βελτιστοποίηση των πράξεων στα πεπερασμένα σώματα που χρησιμοποιούνται στην κρυπτογραφία δημοσίου κλειδιού. Τα πιο ευρέως χρησιμοποιούμενα σε κρυπτογραφία πεπερασμένα σώματα είναι τα GF(p) (πρώτα σώματα) και τα GF(2^k) (πεπερασμένα σώματα δυαδικής επέκτασης). Σε σχέση με την αριθμητική των GF(p), προτείνεται η χρήση του αλγόριθμου του Montgomery για modulo πολλαπλασιασμό, τροποποιημένου έτσι ώστε να χρησιμοποιεί Carry-Save πλεονάζουσα λογική καθώς και προεπεξεργασία τιμών. Η προκύπτουσα προτεινόμενη αρχιτεκτονική χρησιμοποιείται σε μονάδα ύψωσης σε δύναμη (που αποτελεί και την βασική αριθμητική πράξη του RSA). Η προτεινόμενη μονάδα επιτυγχάνει πολύ καλύτερα αποτελέσματα σε σχέση με άλλες αρχιτεκτονικές τόσο ως προς την ταχύτητα λειτουργίας αλλά και ως προς τους χρησιμοποιούμενους πόρους υλικού. Σε σχέση με την αριθμητική των GF(2^k), προτείνονται αλγόριθμοι και αρχιτεκτονικές για ευέλικτο πολλαπλασιασμό και για αντιστροφή, όταν χρησιμοποιείται πολυωνυμική βάση αναπαράστασης και μια μεθοδολογία πολλαπλασιασμού με αντίστοιχες σειριακές (SMPO) και παράλληλες αρχιτεκτονικές πολλαπλασιασμού όταν χρησιμοποιείται αναπαράσταση κανονικής βάσης. Τέλος, στα πλαίσια της αριθμητικής Ελλειπτικών Καμπύλων η οποία βασίζεται στα πεπερασμένα σώματα GF(p) ή GF(2^k) (στην κρυπτογραφία), χρησιμοποιήθηκαν προτεινόμενες αρχιτεκτονικές δομές για τα σώματα αυτά έτσι ώστε να προκύψει μια ανταγωνιστική αριθμητική μονάδα πράξεων για Ελλειπτικές Καμπύλες. Το πρόβλημα που εμφανίζεται σε μια τέτοια μονάδα έχει να κάνει με το μεγάλο κόστος της αντιστροφής σε πεπερασμένα σώματα σε πόρους υλικού αλλά και σε καθυστέρηση υπολογισμών. Χρησιμοποιώντας την αρχιτεκτονική δομή που προτείνεται στην παρούσα διδακτορική διατριβή για αντιστροφή-πολλαπλασιασμό σε GF(2^k) (μονάδα πολλαπλασιασμού/αντιστροφής) το προαναφερθέν κόστος ελαχιστοποιείται.
author2 Κουφοπαύλου, Οδυσσέας
author_facet Κουφοπαύλου, Οδυσσέας
Φούρναρης, Απόστολος
format Thesis
author Φούρναρης, Απόστολος
author_sort Φούρναρης, Απόστολος
title Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
title_short Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
title_full Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
title_fullStr Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
title_full_unstemmed Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
title_sort σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού
publishDate 2008
url http://nemertes.lis.upatras.gr/jspui/handle/10889/745
work_keys_str_mv AT phournarēsapostolos schediasmoskryptographikōnsystēmatōndēmosioukleidiou
_version_ 1771297161864019968
spelling nemertes-10889-7452022-09-05T05:37:31Z Σχεδιασμός κρυπτογραφικών συστημάτων δημοσίου κλειδιού Φούρναρης, Απόστολος Κουφοπαύλου, Οδυσσέας Κουφοπαύλου, Οδυσσέας Γκούτης, Κωνσταντίνος Στουραίτης, Αθανάσιος Σερπάνος, Δημήτριος Παλιουράς, Βασίλειος Αλεξίου, Γεώργιος Ζαρολιάγκης, Χρήστος Fournaris, Apostolos Σχεδιασμός υλικού VLSI Κρυπτογραφία δημοσίου κλειδιού Κρυπτογραφία ελλειπτικών καμπύλων Εφαρμογές σε πεπερασμένα σώματα Αριθμητική υπολογιστών 005.82 Στα πλαίσια αυτής της διδακτορικής διατριβής μελετήθηκαν τόσο το κρυπτογραφικό σχήμα του RSA όσο και τα διαφορά σχήματα κρυπτογραφίας ελλειπτικών καμπύλων με στόχο την πρόταση μιας αποδοτικής, σε ταχύτητα και απαιτούμενους πόρους υλικού, μεθοδολογία σχεδιασμού τους. Σε αυτή τη μεθοδολογία σχεδιασμού δίνεται μεγάλο βάρος στη βελτιστοποίηση των πράξεων στα πεπερασμένα σώματα που χρησιμοποιούνται στην κρυπτογραφία δημοσίου κλειδιού. Τα πιο ευρέως χρησιμοποιούμενα σε κρυπτογραφία πεπερασμένα σώματα είναι τα GF(p) (πρώτα σώματα) και τα GF(2^k) (πεπερασμένα σώματα δυαδικής επέκτασης). Σε σχέση με την αριθμητική των GF(p), προτείνεται η χρήση του αλγόριθμου του Montgomery για modulo πολλαπλασιασμό, τροποποιημένου έτσι ώστε να χρησιμοποιεί Carry-Save πλεονάζουσα λογική καθώς και προεπεξεργασία τιμών. Η προκύπτουσα προτεινόμενη αρχιτεκτονική χρησιμοποιείται σε μονάδα ύψωσης σε δύναμη (που αποτελεί και την βασική αριθμητική πράξη του RSA). Η προτεινόμενη μονάδα επιτυγχάνει πολύ καλύτερα αποτελέσματα σε σχέση με άλλες αρχιτεκτονικές τόσο ως προς την ταχύτητα λειτουργίας αλλά και ως προς τους χρησιμοποιούμενους πόρους υλικού. Σε σχέση με την αριθμητική των GF(2^k), προτείνονται αλγόριθμοι και αρχιτεκτονικές για ευέλικτο πολλαπλασιασμό και για αντιστροφή, όταν χρησιμοποιείται πολυωνυμική βάση αναπαράστασης και μια μεθοδολογία πολλαπλασιασμού με αντίστοιχες σειριακές (SMPO) και παράλληλες αρχιτεκτονικές πολλαπλασιασμού όταν χρησιμοποιείται αναπαράσταση κανονικής βάσης. Τέλος, στα πλαίσια της αριθμητικής Ελλειπτικών Καμπύλων η οποία βασίζεται στα πεπερασμένα σώματα GF(p) ή GF(2^k) (στην κρυπτογραφία), χρησιμοποιήθηκαν προτεινόμενες αρχιτεκτονικές δομές για τα σώματα αυτά έτσι ώστε να προκύψει μια ανταγωνιστική αριθμητική μονάδα πράξεων για Ελλειπτικές Καμπύλες. Το πρόβλημα που εμφανίζεται σε μια τέτοια μονάδα έχει να κάνει με το μεγάλο κόστος της αντιστροφής σε πεπερασμένα σώματα σε πόρους υλικού αλλά και σε καθυστέρηση υπολογισμών. Χρησιμοποιώντας την αρχιτεκτονική δομή που προτείνεται στην παρούσα διδακτορική διατριβή για αντιστροφή-πολλαπλασιασμό σε GF(2^k) (μονάδα πολλαπλασιασμού/αντιστροφής) το προαναφερθέν κόστος ελαχιστοποιείται. In this PhD dissertation the cryptographic schemes of RSA and elliptic curve cryptography were studied extensively in order to propose design methodologies for those schemes that are efficient in terms of computation speed and employed hardware resources. In the proposed methodologies special attention is given in the optimization of finite field arithmetic operations employed in public key cryptography. The most widely used such fields are the prime fields or GF(p) and the binary extension fields or GF(2^k) Concerning GF(p) arithmetic, an optimized version of Montgomery modulo multiplication algorithm is proposed for performing modular multiplication that employs Carry - Save redundant logic and value precomputation. The resulting architecture is used in a modular exponentiation unit (which is the basic arithmetic operation of RSA. The proposed unit achieves much better results in terms of computation speed and utilized hardware resources when compared to other well known similar designs. Concerning arithmetic in GF(2^k), algorithms and architectures are proposed for versatile design and inversion when polynomial basis representation of the GF(2^k)is employed. Also, a multiplication design methodology is proposed along with resulting sequential (SMPO) and parallel hardware architectures when normal basis representation of the GF(2k) is chosen. Finally, on elliptic curve arithmetic defined over GF(p) or GF(2^k) the proposed architectures for those fields were used in order to propose a competitive elliptic curve point operation arithmetic unit. The major problem of such a unit is the extensive cost in hardware resources and computation delay of finite field inversion operation. Using the architectural structure proposed in the PhD dissertation for inversion/multiplication in GF(2^k) (multiplication/inversion unit) the design cost can be minimized. 2008-03-31T08:45:32Z 2008-03-31T08:45:32Z 2007-12-20 2008-03-31T08:45:32Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/745 gr Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. application/pdf