Περίληψη: | During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication
devices' nature permit the support of multiple antennas due to size, power consumption, and hardware limitations. To this end, cooperative communications provide an alternative way to achieve spatial diversity via virtual antenna arrays formed by single antenna nodes. It is noteworthy that cooperation has an important role within the CR literature as many techniques developed within its context exploiting the benefits of cooperation in order to achieve improved performance. Therefore, the aim of the present dissertation is to develop efficient and practical cognitive, cooperative and cognitive cooperative schemes. More specifically the contributions are the following ones.
The first contribution is a novel CR communication scheme. During the past years numerous CR communication schemes have been presented in literature. To the best of our knowledge, the majority of them were developed assuming perfect Channel State Information (CSI) at the unlicensed user's side. There are several cases where the licensed users do not desire any interaction with the unlicensed ones. In such cases, the assumption that the unlicensed user can obtain CSI that concerns the licensed user channels is not valid and as a result the corresponding communication technique cannot be applied. Therefore, at first we propose an novel CR communication scheme that requires CSI that can be estimated in a completely blind manner. Then, the corresponding blind estimation scheme is developed. Another significant contribution is the theoretical results that have been derived for both the perfect CSI case and the imperfect CSI case (when the blind estimation scheme is employed for obtaining the corresponding CSI). Especially, the theoretical results that concern the imperfect CSI case are some of the first ones that appear in the relevant literature, to the best of our knowledge.
The second contribution is a decentralized adaptive Eigenvalue-Based spectrum Sensing (EBSS) technique for multi-antenna CR Systems. Spectrum Sensing is a fundamental functionality in CR systems. In general, the unlicensed user employs a spectrum sensing technique in order to detect licensed user(s) activity in scenarios where the former user is permitted to establish a communication link only via spectrum areas that are temporarily free of the latter one's transmissions. EBSS techniques are known to achieve good performance and also to be applicable in a completely blind manner. In the literature so far, only batch and centralized cooperative EBSS techniques have been considered which, however, suffer from limitations that render them impractical in several cases such as, when time-varying channels are involved or continuous spectrum monitoring is required. Thus, the aim here is to develop practical cooperative adaptive versions of typical Eigenvalue-Based Spectrum Sensing (EBSS) techniques which could be applied in a completely decentralized manner and cope well in time-varying scenarios. To this end, at first, novel adaptive EBSS techniques are developed for the Maximum Eigenvalue Detector (MED), the Maximum-Minimum Eigenvalue Detector (MMED), and the Generalized Likelihood Ratio Test (GLRT) schemes, respectively, for a single-user (no cooperation) case. Then, a novel distributed subspace tracking method is proposed which enables the cooperating nodes to track the joint subspace of their received signals. Based on this method, cooperative decentralized versions of the adaptive EBSS techniques are subsequently developed that overcome the limitations of the existing batch centralized approaches.
The third contribution is a new cooperative scheme for half-duplex uplink transmission. The technique is based on a virtual MIMO structure formed by the single antenna source and relays nodes along with the multi-antenna base station which is the destination node. The new technique aims at providing increased diversity and multiplexing gains, contrariwise to existing approaches where the proposed techniques achieve increased diversity gain at the cost of severe multiplexing gain loss. The theoretical outage probability and the corresponding Diversity Multiplexing Trade-off (DMT) curve of the proposed technique are also derived.
The final contribution is two novel algorithms which enable the relay cooperation for the distributed computation of the beamforming weights in a blind and adaptive manner, without the need to forward the data to a fusion center. The proposed algorithms are constituent parts of two corresponding distributed beamforming schemes for relay networks that distribute the computational overhead equally among the relay nodes. In the first scheme, the beamforming vector is computed through minimization of the total transmit power subject to a receiver quality-of-service constraint (QoS). In the second scheme, the beamforming weights are obtained through maximization of the receiver signal-to-noise-ration (SNR) subject to a total transmit power constraint. The proposed approaches achieve close performance to the one of the optimal beamforming solutions derived assuming perfect channel state information at the relays' side.
|